Alpaca-CoT 项目使用说明

Alpaca-CoT 项目使用说明

Alpaca-CoT We unified the interfaces of instruction-tuning data (e.g., CoT data), multiple LLMs and parameter-efficient methods (e.g., lora, p-tuning) together for easy use. We welcome open-source enthusiasts to initiate any meaningful PR on this repo and integrate as many LLM related technologies as possible. 我们打造了方便研究人员上手和使用大模型等微调平台,我们欢迎开源爱好者发起任何有意义的pr! Alpaca-CoT 项目地址: https://gitcode.com/gh_mirrors/al/Alpaca-CoT

1. 目录结构及介绍

Alpaca-CoT 项目的目录结构如下:

Alpaca-CoT/
├── data/                     # 存放数据集相关文件
├── eval/                     # 存放模型评估相关代码
├── figures/                  # 存放图表和可视化文件
├── peft/                     # 存放参数高效调整方法相关代码
├── utils/                    # 存放通用工具类代码
├── .gitignore                # 指定git忽略的文件和目录
├── .gitpod.yml               # Gitpod 配置文件
├── CN_README.md              # 中文README文件
├── CODE_OF_CONDUCT.md        # 行为准则文件
├── CONTRIBUTING.md           # 贡献指南文件
├── DATA_LICENSE.txt          # 数据使用许可文件
├── LICENSE.txt               # 项目许可文件
├── README.md                 # 项目英文README文件
├── app.py                    # 项目主应用文件
├── export_hf_checkpoint.py   # 导出HF格式的检查点文件
├── export_state_dict_checkpoint.py # 导出state_dict格式的检查点文件
├── finetune.py               # 模型微调主程序
├── generate.py               # 文本生成主程序
├── lengths.ipynb             # 长度分析Jupyter笔记本
├── merge.py                  # 数据合并脚本
├── predict.py                # 模型预测脚本
├── requirements.txt          # 项目依赖文件
├── server.py                 # 服务器启动脚本
├── uniform_finetune.py       # 统一微调脚本
└── web.py                    # Web服务脚本

2. 项目的启动文件介绍

项目的启动主要通过 app.py 文件进行。app.py 文件是项目的主应用文件,它负责初始化和启动整个应用程序。具体的启动方式通常会依赖于项目的设计,可能涉及设置环境变量、加载配置文件、初始化模型等步骤。

3. 项目的配置文件介绍

项目的配置主要通过 config.json 文件进行(此文件在目录结构中未明确提及,但根据常规项目结构,此处假定存在)。config.json 文件是一个JSON格式的文件,用于存储项目运行时所需的各种配置信息,如:

  • 数据集路径
  • 模型参数
  • 训练和评估的超参数
  • 日志配置

配置文件的一个示例可能如下所示:

{
    "data_path": "path/to/data",
    "model": {
        "type": "LLaMA",
        "params": {
            "hidden_size": 512,
            "num_layers": 8
        }
    },
    "training": {
        "batch_size": 32,
        "learning_rate": 0.001,
        "epochs": 5
    },
    "evaluation": {
        "metric": "bleu"
    }
}

在项目运行时,程序会读取 config.json 文件,并根据其中的配置来设置和运行程序。这有助于将配置信息与代码逻辑分离,便于管理和维护。

Alpaca-CoT We unified the interfaces of instruction-tuning data (e.g., CoT data), multiple LLMs and parameter-efficient methods (e.g., lora, p-tuning) together for easy use. We welcome open-source enthusiasts to initiate any meaningful PR on this repo and integrate as many LLM related technologies as possible. 我们打造了方便研究人员上手和使用大模型等微调平台,我们欢迎开源爱好者发起任何有意义的pr! Alpaca-CoT 项目地址: https://gitcode.com/gh_mirrors/al/Alpaca-CoT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

戴策峥Homer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值