OpenEvals 使用与启动指南
openevals 项目地址: https://gitcode.com/gh_mirrors/op/openevals
1. 项目介绍
OpenEvals 是一个开源项目,旨在帮助开发者为其大型语言模型(LLM)应用程序编写评估(evals)。类似于传统软件中的测试,评估是让 LLM 应用程序投入生产的重要环节。OpenEvals 提供了一系列预制的评估器和工具,帮助开发者从基本评估开始,并逐步编写针对其应用程序的定制评估。
2. 项目快速启动
安装
首先,您需要安装 OpenEvals。根据您的编程语言选择以下安装命令:
对于 Python:
pip install openevals
对于 TypeScript:
npm install openevals @langchain/core
设置 OpenAI API Key
为了使用 OpenEvals 中的某些评估器,您需要设置 OpenAI API 密钥。在命令行中设置环境变量:
export OPENAI_API_KEY="your_openai_api_key"
运行第一个评估
以下是一个使用 Python 运行 OpenEvals 的示例:
from openevals.llm import create_llm_as_evaluator
from openevals.prompts import CONCISENESS_PROMPT
# 创建评估器
conciseness_evaluator = create_llm_as_evaluator(
prompt=CONCISENESS_PROMPT,
model="openai:o3-mini"
)
# 输入示例
inputs = "How is the weather in San Francisco?"
# 输出示例(在实际使用中,这将是从您的 LLM 应用程序中获得的输出)
outputs = "Thanks for asking! The current weather in San Francisco is sunny and 90 degrees."
# 执行评估
eval_result = conciseness_evaluator(
inputs=inputs,
outputs=outputs
)
# 打印评估结果
print(eval_result)
输出结果可能如下:
{
'key': 'score',
'score': False,
'comment': 'The output includes an unnecessary greeting ("Thanks for asking!") and extra...'
}
3. 应用案例和最佳实践
OpenEvals 可以用于多种应用场景,例如:
- 评估文本输出的简洁性
- 检查回答的正确性
- 识别输出中的虚构内容(hallucinations)
最佳实践包括:
- 使用预制的评估器作为起点,然后根据需要自定义。
- 在真实的应用程序输出上运行评估器,而不是使用硬编码的示例。
- 根据评估器的反馈调整您的 LLM 应用程序的输出。
4. 典型生态项目
OpenEvals 是 LangChain 生态系统的一部分,它包含了多个与语言模型相关的开源项目。以下是一些典型的生态项目:
- LangChain:用于构建和部署基于 LLM 的应用程序的框架。
- AgentEvals:专门用于评估 LLM 代理的输出。
- LangSmith:提供工具和库来帮助开发者在 LLM 应用程序中实现更好的性能和可解释性。
通过这些项目,开发者可以构建更强大的 LLM 应用程序,并确保它们以最佳方式运行。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考