KBNet 项目使用教程

KBNet 项目使用教程

KBNetKBNet: Kernel Basis Network for Image Restoration项目地址:https://gitcode.com/gh_mirrors/kb/KBNet

1. 项目的目录结构及介绍

KBNet 项目的目录结构如下:

KBNet/
├── README.md
├── requirements.txt
├── setup.py
├── basicsr/
├── configs/
├── data/
├── docs/
├── experiments/
├── scripts/
├── tests/
└── utils/

目录介绍

  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖文件。
  • setup.py: 项目安装脚本。
  • basicsr/: 基础图像恢复工具包。
  • configs/: 配置文件目录。
  • data/: 数据集目录。
  • docs/: 文档目录。
  • experiments/: 实验目录。
  • scripts/: 脚本目录。
  • tests/: 测试目录。
  • utils/: 工具函数目录。

2. 项目的启动文件介绍

KBNet 项目的启动文件主要是 setup.pyscripts/ 目录下的脚本文件。

setup.py

setup.py 文件用于安装项目所需的依赖和配置环境。使用以下命令进行安装:

python setup.py develop --no_cuda_ext

scripts/

scripts/ 目录下包含了一些用于启动和测试项目的脚本文件,例如:

  • train.py: 用于训练模型的脚本。
  • test.py: 用于测试模型的脚本。

3. 项目的配置文件介绍

KBNet 项目的配置文件主要位于 configs/ 目录下。

configs/

configs/ 目录下包含了各种任务的配置文件,例如:

  • denoising.yaml: 用于图像降噪任务的配置文件。
  • deblurring.yaml: 用于图像去模糊任务的配置文件。
  • deraining.yaml: 用于图像去雨任务的配置文件。

配置文件示例

以下是一个配置文件的示例:

task: denoising
dataset: CBSD
model: KBNet
batch_size: 8
learning_rate: 0.001
num_epochs: 100

配置文件中包含了任务类型、数据集、模型名称、批量大小、学习率、训练轮数等参数。


以上是 KBNet 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!

KBNetKBNet: Kernel Basis Network for Image Restoration项目地址:https://gitcode.com/gh_mirrors/kb/KBNet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿兴亮Sybil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值