KBNet 项目使用教程
KBNetKBNet: Kernel Basis Network for Image Restoration项目地址:https://gitcode.com/gh_mirrors/kb/KBNet
1. 项目的目录结构及介绍
KBNet 项目的目录结构如下:
KBNet/
├── README.md
├── requirements.txt
├── setup.py
├── basicsr/
├── configs/
├── data/
├── docs/
├── experiments/
├── scripts/
├── tests/
└── utils/
目录介绍
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
- setup.py: 项目安装脚本。
- basicsr/: 基础图像恢复工具包。
- configs/: 配置文件目录。
- data/: 数据集目录。
- docs/: 文档目录。
- experiments/: 实验目录。
- scripts/: 脚本目录。
- tests/: 测试目录。
- utils/: 工具函数目录。
2. 项目的启动文件介绍
KBNet 项目的启动文件主要是 setup.py
和 scripts/
目录下的脚本文件。
setup.py
setup.py
文件用于安装项目所需的依赖和配置环境。使用以下命令进行安装:
python setup.py develop --no_cuda_ext
scripts/
scripts/
目录下包含了一些用于启动和测试项目的脚本文件,例如:
train.py
: 用于训练模型的脚本。test.py
: 用于测试模型的脚本。
3. 项目的配置文件介绍
KBNet 项目的配置文件主要位于 configs/
目录下。
configs/
configs/
目录下包含了各种任务的配置文件,例如:
denoising.yaml
: 用于图像降噪任务的配置文件。deblurring.yaml
: 用于图像去模糊任务的配置文件。deraining.yaml
: 用于图像去雨任务的配置文件。
配置文件示例
以下是一个配置文件的示例:
task: denoising
dataset: CBSD
model: KBNet
batch_size: 8
learning_rate: 0.001
num_epochs: 100
配置文件中包含了任务类型、数据集、模型名称、批量大小、学习率、训练轮数等参数。
以上是 KBNet 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
KBNetKBNet: Kernel Basis Network for Image Restoration项目地址:https://gitcode.com/gh_mirrors/kb/KBNet