【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)


前言

请先思考几个问题:

  • 你是否在全网苦寻【图像去噪(Image Denoising)】的相关资料?
  • 你的目标是否是看懂【图像去噪(Image Denoising)】的相关论文,复现代码,跑出结果,并试图创新?
  • 你是否需要发表【图像去噪(Image Denoising)】的相关论文毕业?
  • 你是否需要做【图像去噪(Image Denoising)】的相关项目,开发软件,研究算法,获得专利或者软著?

只要是与【图像去噪(Image Denoising)】有关的问题,那么请继续往下看。

以刚读研的研究生为例,进组后导师让你研究与【图像去噪(Image Denoising)】的相关课题,但又没有时间指导你,只能自己研究。

这个时候你该怎么办呢?刚入门的小白,什么也不了解,只能是自己搜集资料或者问师兄师姐。

如果你问师兄师姐,怎么搞科研啊?如何看懂论文啊?如何读懂复杂的代码啊?

他们大概率会回复你:硬啃。一句一句地读论文呢,一行一行地理解代码。无他,唯手熟尔。

你摇了摇头,觉得他们“自私”,没有把“看家本领”传授于你。于是,你开始像无头苍蝇一样,试图寻找好的学习方法,希望通过一种好的学习方法来提升科研效率。

想法很好,但浪费时间和精力,而且没有开始真正的学习,只是在学习的边缘徘徊。其实,就差一步,管它科研难不难,学就完事了。

学习无捷径,大道至简,先学起来,再慢慢修正学习路线,最后到达顶峰。

很幸运你看到了本文,本专栏的意义就在于用我走过的路,带领你开始学习,避免“找方法找资料”这种费时费力的弯路。领先实验室同门,早发论文,早做项目,受导师青睐,尽早达到毕业要求好去实习。

三年时间转瞬即逝,必须马上开始!而你要做的,只是认认真真的读完每一篇专栏内的文章即可,相信你一定会有收获,科研能力越来越强,顺利完成你的目标。

说点肺腑之言,感兴趣的话继续往下看。

适配人群

急需入门【图像去噪(Image Denoising)】的朋友,具体为:

  • 看不懂论文、写不出代码、无创新思路的新手小白,希望快速入门
  • 课题与去噪相关,需要发论文毕业的本科生和研究生(硕士、博士),缺乏科研能力以及论文写作经验的实验室难兄难弟
  • 导师放养,不知道选择哪个方向入手的迷茫者
  • 需要论文、专利、软著等评职称的相关人员
  • 有做去噪相关项目的本科生、研究生(硕士、博士)、企业开发人员、算法工程师等

如果你符合上面的某一条,不用担心,继续往下看即可。

专栏简介

专栏名称暂定为【Pytorch深度学习图像去噪算法100例】。顾名思义,共三点限制:

  1. 专栏内涉及的算法都是基于深度学习的图像去噪算法。非深度学习的可能只介绍BM3D,用做实验对比方法的baseline(类似超分的Bicubic)。
  2. 所有算法都是基于Pytorch框架实现的。论文公开的源码是Pytorch的我们就基于源码复现,不是用Pytorch框架实现或者未公开源码的算法,我会用Pytorch重新复现一遍,以达成代码的统一,方便大家做实验。
  3. 图像去噪领域顶刊顶会文章精选100篇论文,复现100个源码(已达成,持续更新中)。

专栏内文章主要为两部分:【论文精读】与【论文复现】

  • 论文精读:读懂论文,总结提炼,聚焦核心内容,不只是全文翻译

  • 论文复现:跑通流程,源码解析,提升代码能力,得到去噪结果以及指标计算

综合而言,从大到小拆解模型结构,从小到大实现模型搭建。实现论文与源码的统一,深入理解论文行文逻辑与代码实现逻辑,融汇贯通二者思想,并学以致用。

更具体详细的内容见“阅读方法”。

专栏亮点

  • 省时:图像去噪领域论文全覆盖,算法模型全,主流的算法模型都会涉及结合能搜集到的资料深入浅出解读,按顺序阅读即可,节省搜论文的时间。【论文复现】文章末尾会提供训练好各放大倍数下的最优性能(PSNR/SSIM)模型权重文件,读者可以下载直接使用,方便论文中实验部分方法对比(视觉效果和量化指标)或直接应用模型超分自己的图像数据。
  • 省力:大白话讲解,手把手教学,带你读懂论文,跑通代码,提升代码能力,理解文章的算法和创新点,避免一个人对着论文死磕但还是不理解的情况出现。按部就班,肯定能跑出好的模型结果,帮助你了解论文内容和结构,积少成多,学会写论文。同时,让你少走弯路,避免模型调参四处碰壁,涉及的模型都提供训练好的权重文件,可以直接拿来测试自己的图像。
  • 省事:努力做全网最全最好最详细的【图像去噪】专栏,专栏永久更新,第一时间更新最新的图像去噪领域,关注订阅后一劳永逸,关注账号后更新了会私信告知。有问题可以随时留言交流。

阅读方法

【论文精读】 文章结构按照论文的结构包含全文翻译、关键信息提炼,信息总结等。原文中的重点内容以黑色加粗呈现,我自己的总结和注解以红色加粗绿色加粗呈现。阅读和之前工作相比创新改进的地方,如网络结构(重点)、损失函数等。

根据自身情况,选择以下 【论文精读】 的阅读方式:

  1. 有写论文需求的朋友:对照原论文,全文阅读。除了看懂论文提出的方法外,还需要培养“讲故事”能力,深化论文细节,为论文写作做准备。
  2. 想快速理解文章的朋友:略读文章翻译部分,重点看加粗红字的提炼总结。
  3. 只想了解文章创新:看摘要和介绍部分末尾提出的创新贡献+网络结构,然后直接跳转到文末的复现文章。

上述三种情况对应的论文结构:

  1. Abstract (1、2、3;无论哪种情况都应该看摘要)
  2. Introduction(1、2;搞懂motivation,找创新思路)
  3. Related Work(1)
  4. The Proposed Method(1、2、3;1全看,2和3看重点)
  5. Experimental(1;实验部分重点在对应的【论文复现】文章中)
  6. Conclusion (1)
    补充:如果你符合第一种情况,那么应该以审稿人的角度来看文章。如果你是审稿人,你会先看哪里,后看哪里,重点看哪里,以及给这篇文章什么审稿结果?问题的答案就是你在写论文的时候应该注意的东西。

【论文复现】 文章结构:

  1. 跑通代码:拿到任何一个代码项目,首先要做的就是根据README.md先跑通,【复现】文章的第一部分就相当于README,即使用手册。每篇复现文章的第一部分均是详细的跑通步骤,包括设置配置文件、设置数据集和预训练模型路径、需要的依赖库、报错解决等。根据路径放置好数据集,跑通训练代码,训练完跑通测试代码。如果有已经训练好的模型,可以直接推理测试。
  2. 代码解析:详细讲解全部代码,注释丰富,网络结构以及相关参数与论文一致。代码结构一般为数据预处理、网络结构实现、训练、测试、其他补充代码。重点在于网络结构以及特殊损失函数的实现,其他部分大同小异。尽量复现出与原论文一致的结果。
  3. 总结与思考:记录复现过程中遇到的问题,思考可能的改进提升。附带完整代码和训练好的模型权重文件下载链接。

根据自身情况,选择以下 【论文复现】 的阅读方式:

  1. 只需要结果(去噪后的结果图像、计算测试集指标PSNR/SSIM):只看1. 跑通代码
  2. 为了提升代码能力,实现论文与代码对应,改进结构:1.2.3全看

定价理由

专栏原价399.9,目前特价299.9,订阅满150人恢复原价,先到先得!!!

为什么选择本专栏?

  • 和其他能搜到的去噪专栏相比,本专栏文章数量更多,质量更高。预计更新100个图像去噪算法,每个经典算法两篇文章(精读+复现),无源码文章一篇精读,还有其他基础知识、论文写作等文章,专栏预计总共更新250篇文章,平均每篇文章的价格为299.9/250 ≈ 1.19元,文章保质保量,专栏文章平均质量分为96。少吃半顿海底捞,就能解决一个大麻烦。

在这里插入图片描述

排行榜登顶:

在这里插入图片描述

在这里插入图片描述

其他兄弟专栏:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 以硕士期间从研一到研二下学期一年半180天发出小论文计算,平均每天为299.9/180 = 1.66。也就是说,每天只花1.66元就可以获得一个一劳永逸的学习专栏,何乐而不为?对发论文、研究算法、做项目、以后找工作都有帮助,很快就可以回本。
  • 以时间计算,180天只需每天花一小部分时间复现一篇论文,努力一下可以复现两篇,何况也不一定专栏内所有文章都看。试想一下,当其他人还在花费大量时间啃论文啃代码焦头烂额时,你已经不费吹灰之力,领先于人了。
  • 为知识付费,为学习投资,形成知识体系,提升代码能力,还可以拓展人脉(私信我或加本文【与我联系】章节中的VX加交流群,订阅后可加订阅群),潜在价值远非价格可比。
  • 避免毕业困难,自信受挫,失去学习热情

品质承诺

  1. 【论文精读】和【论文复现】文章保质保量。文章质量参考两篇DnCNN的置顶文章,请先试读
    【图像去噪】论文精读:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising(DnCNN)
    【图像去噪】论文复现:新手入门必看!DnCNN的Pytorch源码训练测试全流程解析!为源码做详细注释!补充DnCNN-B和DnCNN-3的模型训练和测试!附各种情况下训练好的模型权重文件!
  2. 订阅后永久免费阅读专栏内全部文章免费获取专栏内全部代码
  3. 专栏内文章如不符合上述试读文章的质量,可全额退款无任何风险。其他情况不予退款

关于更新

本专栏永久更新。为了保证文章质量,更新速度会慢一些。更新了会群发消息通知,所以请订阅专栏的朋友一定要关注我,否则收不到更新通知。

关于答疑

订阅专栏后私信我加订阅群!交流群在

宗旨:先仔细阅读文章,有问题再问

基础薄弱的同学先学深度学习基础,搞明白框架和执行逻辑,重点为pytorch(数据处理DataLoader、模型实现nn、训练相关)、cv2和PIL等图像处理基础,有的问题搜一搜,查一查,把基础打好。

欢迎提出以下问题:

  • 专栏内文章中出现的错误和表意不明的内容;
  • 代码报错;
  • 与算法模型相关的讨论,改进等;
  • 希望我后续出的文章,方向,功能需求等;
  • 友好的讨论,各种方面都可以,论文、投稿、读研读博、当老师等;

符合以上条件的,我知无不言,作为一名高校教师,我很愿意和友好的学生沟通!工作很忙,空闲时间看见了就会回复。

以下评论和问题不回:

  • 不友好的攻击与谩骂,没有礼貌的;比如:“这么简单的东西还收费”。你觉得简单,还有很多需要入门的小伙伴不觉得简单,不要用你的标准来评判他人;
  • 不看文章一通乱问的;答案就在文章中,仔细阅读,文章写的很细致,问我我给你回答没有你仔细阅读效率高;
  • 表述不明,完全不知所云的;不明白你的问题,自然无法解答;
  • 上来就要代码的,想白嫖的,套话的;不要问我这个方案可不可以,能不能给个创新idea等厚脸皮的话。一切都要自己动手做,去试了才知道,谁有好的想法不都自己发文章了吗,还能告诉你吗?
  • 我也不会的;我不是神仙什么都会,可以讨论,但不能要求我一定能回答上;

订阅专栏后的答疑是作为附加的增值服务,我没有义务什么离谱的问题都回答你,即使你花了钱也不行,每个人的标准不同,求同存异,友好相处,有问题有意见可以提,但别找骂。

环境配置

项目环境:

  • 编译器:pycharm
  • cuda:torch 1.12.1
  • 操作系统:windows11本地运行(RTX 4070Ti Super)本地运行或Linux服务器(4个Titan RTX GPU)

只要不是太差的显卡,专栏内的算法都可以跑。

不建议CPU运行。

复现文章中提供的代码在Windows和Linux下均可运行

去噪概述

噪声主要分为两类:

  • 合成噪声(Synthetic Noise),一般指在“干净”图像上添加高斯白噪声(Additive White Gaussian Noise,AWGN)

  • 真实噪声(Real Noise),即相机拍照时图像上的真实噪声。一般以真实图像作为带噪图像输入,mean作为Ground-truth。

对应噪声分类,产生了两个不同的研究方向以及算法:

  • 基于合成噪声:一般是高斯白噪,便于量化和设计实验;如DnCNN,FFDNet

合成噪声去噪示例
在这里插入图片描述
在这里插入图片描述

  • 基于真实噪声:真实世界的盲去噪问题,真实图像的噪声分布是未知的,可能是某些不同噪声类型和分布的叠加。有用泊松-高斯模拟,用ISP相机产生噪声的原理模拟等,属于摸着石头过河,需要很强的统计学、图像信号功底;如CBDNet,RIDNet,VDNnet

真实噪声去噪示例
在这里插入图片描述
在这里插入图片描述
SIDD数据集上SOTA方法视觉效果大对比:

在这里插入图片描述

  • 以及两者通用的算法。

文章目录

专栏内文章包含四大部分基础知识、数据集相关、去噪算法、论文相关

其中,

  • 基础知识包含深度学习基础、图像处理基础、指标计算、标准库使用
  • 数据集相关文章包含不好处理的数据集制作、读取、裁剪等
  • 去噪算法大体分为监督和非监督两类,监督类模型数据集中包含Ground-Truth,非监督一般没有Ground-Truth。此外,还有一些其他小方向的文章和与其他领域结合的文章;
  • 论文相关包含科研绘图(神经网络结构图模板、视觉展示的局部放大图)、论文写作提纲

文章目录按照科研顺序排列:打基础 → 处理好数据集 → 算法模型 → 写论文

全流程保姆级安排,一个专栏即可毕业!

去噪算法目录按年份和模型性能综合排序,按顺序阅读。

基础知识

  1. 【图像去噪】基础知识之框架概述 | 图像去噪任务代码实现的通用框架,包括数据预处理、模型实现、训练、验证、测试
  2. 【图像去噪】基础知识之图像流 | 图像从输入到输出的前世今生,包括类型变化、维度变化、数值变化
  3. 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
  4. 【图像去噪】基础知识之量化评估指标 | 图像去噪任务量化评价指标介绍,包括PSNR、SSIM、NIQE、LPIPS
  5. 【图像去噪】基础知识之计算效率 | 计算模型复杂度(MACs,Flops以及单位缩放)和参数量
  6. 【图像去噪/超分】基础知识之BasicSR | BasicSR库的用法详解,包含各部分代码功能详细介绍(全代码注释),自己改进创新需要修改的位置
  7. 【图像超分/图像去噪】Windows下使用BasicSR训练和测试模型

数据集相关

  1. 【图像去噪】实用小技巧 | 使用matlab将.mat格式的图像转成.png格式的图像,适用于DnD数据集的转换,附DND图像形式的数据集
  2. 【图像去噪】实用小技巧 | 制作SIDD训练集(SIDD-Medium),将320张SIDD原始图像对裁剪成训练所需的96000个256×256的图像块
  3. 【图像去噪】实用小技巧 | 使用matlab将.mat格式的SIDD验证集转成.png格式的图像块,附图像形式的SIDD验证集

去噪算法

核心精炼大合集:【图像去噪】耗时999999个小时!一次看个够!专栏内100个去噪算法大合集,理论速览,核心精炼!内含每篇文章的参考文献Bib格式,论文写作必备!随取随用!(持续更新中)

有监督

有监督之模型改进类科研推荐路径:都跑通结果,跟自己提出的模型对比,选择一些作为对比方法。

  1. TIP 2017)【图像去噪】论文精读:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising(DnCNN
  2. TIP 2017)【图像去噪】论文复现:新手入门必看!DnCNN的Pytorch源码训练测试全流程解析!为源码做详细注释!补充DnCNN-B和DnCNN-3的模型训练和测试!附各种情况下训练好的模型权重文件!
  3. TIP 2018)【图像去噪】论文精读:FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
  4. TIP 2018)【图像去噪】论文复现:适合新手小白的Pytorch版本FFDNet复现!详解FFDNet源码!数据处理、模型训练和验证、推理测试全流程讲解!新手小白都能看懂,学习阅读毫无压力,去噪入门必看!
  5. TPAMI 2019)【图像去噪】论文精读:Denoising Prior Driven Deep Neural Network for Image Restoration(DPDNN
  6. CVPRW 2019)【图像去噪】论文精读:CVPRW 2019 | Deep Iterative Down-Up CNN for Image Denoising(DIDN
  7. CVPRW 2019)【图像去噪】论文复现:深度迭代Down-Up网络,图像去噪新手入门必学项目!DIDN的Pytorch源码复现,跑通全流程,原理与复现详解,网络结构示意图与代码变量一一对应,双系统单卡可跑!
  8. CAAI Transactions on Intelligence Technology 2019)【图像去噪】论文精读:Enhanced CNN for image denoising(ECNDNet
  9. CAAI Transactions on Intelligence Technology 2019)【图像去噪】论文复现:Pytorch实现ECNDNet!入门项目,适合新手小白学习使用,Windows和Linux下均可运行!附训练好的模型文件,可直接得到去噪结果和指标计算!
  10. CVPR 2019)【图像去噪】论文精读:Toward Convolutional Blind Denoising of Real Photographs(CBDNet
  11. CVPR 2019)【图像去噪】论文复现:适合新手小白的Pytorch版本CBDNet复现!轻松跑通训练和测试代码!简单修改路径即可训练自己的数据集!代码详细注释!数据处理、模型训练和验证、推理测试全流程讲解!
  12. ICCV 2019 Oral)【图像去噪】论文精读:Real Image Denoising with Feature Attention(RIDNet
  13. ICCV 2019 Oral)【图像去噪】论文复现:适合新手小白的Pytorch版本RIDNet复现!轻松跑通训练和测试代码!RIDNet网络结构实现拆解!简单修改路径即可训练自己的数据集!模型训练推理测试全流程讲解!
  14. NeurIPS 2016)【图像去噪】论文精读:Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections(REDNet
  15. NeurIPS 2016)【图像去噪】论文复现:Pytorch实现REDNet的三种结构!简单修改路径即可跑通全部代码并训练自己的数据集!支持灰度图和RGB图训练!附训练好的模型文件可直接测试图像得到去噪结果以及评价指标!
  16. ICCV 2017)【图像去噪】论文精读:MemNet: A Persistent Memory Network for Image Restoration
  17. ICCV 2017)【图像去噪】论文复现:全网最细的Pytorch版本实现MemNet!论文中的网络结构图与代码中的每个变量一一对应!实现思路一目了然!附完整代码和训练好的模型权重文件!
  18. CVPR 2018)【图像去噪】论文精读:xUnit: Learning a Spatial Activation Function for Efficient Image Restoration
  19. CVPR 2018)【图像去噪】论文复现:代替ReLU!Pytorch实现即插即用激活函数模块xUnit,并插入到DnCNN中实现xDnCNN!
  20. CVPR 2018)【图像去噪】论文精读:Multi-level Wavelet-CNN for Image Restoration(MWCNN
  21. CVPR 2018)【图像去噪】论文复现:小波变换替代上下采样!Pytorch实现MWCNN,数据处理、模型训练和验证、推理测试全流程讲解,无论是科研还是应用,新手小白都能看懂,学习阅读毫无压力,去噪入门必看!
  22. CVPR 2017)【图像去噪】论文精读:Learning Deep CNN Denoiser Prior for Image Restoration(IRCNN
  23. CVPR 2017)【图像去噪】论文复现:支持任意大小的图像输入!四十多行实现Pytorch极简版本的IRCNN,各种参数和测试集平均PSNR结果与论文一致!
  24. NIPS 2018)【图像去噪】论文精读:Non-Local Recurrent Network for Image Restoration(NLRN
  25. ICCV 2019)【图像去噪】论文精读:Self-Guided Network for Fast Image Denoising(SGN)
  26. ECCV 2020)【图像去噪】论文精读:Practical Deep Raw Image Denoising on Mobile Devices(PMRID
  27. ECCV 2020)【图像去噪】论文精读:Spatial-Adaptive Network for Single Image Denoising(SADNet
  28. ECCV 2020)【图像去噪】论文复现:三万字长文详解SADNet的Pytorch源码!全网最详细保姆级傻瓜式教程,新手小白也能看懂,代码逐行注释,跑通代码得到去噪结果毫无压力!网络结构图与模型定义的量一一对应!
  29. ICLR 2019)【图像去噪】论文精读:Residual Non-local Attention Networks for Image Restoration(RNAN
  30. ICLR 2019)【图像去噪】论文复现:非局部注意力机制提升去噪性能!Pytorch实现RNAN,解决out of memory问题,论文中结构图与代码变量一一对应,清晰明了保证看懂!附训练好的模型文件!
  31. CVPR 2020)【图像去噪】论文精读:Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization(AINDNet
  32. NN 2020)【图像去噪】论文精读:Attention-guided CNN for Image Denoising(ADNet
  33. NN 2020)【图像去噪】论文复现:注意力机制助力图像去噪!ADNet的Pytorch源码复现,跑通全流程源码,补充源码中未提供的保存去噪结果图像代码,ADNet网络结构图与源码对应,新手友好,单卡可跑!
  34. NeurIPS 2019)【图像去噪】论文精读:Variational Denoising Network: Toward Blind Noise Modeling and Removal(VDNet
  35. NeurIPS 2019)【图像去噪】论文复现:包能看懂!VDNet的Pytorch源码全解析!逐行详细注释,理论与代码结合,提升代码能力!
  36. AAAI 2020)【图像去噪】论文精读:End-to-End Unpaired Image Denoising with Conditional Adversarial Networks(UIDNet
  37. TPAMI 2021)【图像去噪】论文精读:Plug-and-Play Image Restoration with Deep Denoiser Prior(DRUNet
  38. TPAMI 2021)【图像去噪】论文复现:无偏置在超大噪声下也能有效去噪!DRUNet的Pytorch源码复现,跑通DRUNet源码,得到去噪结果和评价指标,可作为实验中的对比方法,源码结构梳理,注释清晰,单卡可运行!
  39. CVPR 2021)【图像去噪】论文精读:SwinIR: Image Restoration Using Swin Transformer
  40. CVPR 2021)【图像去噪】论文复现:Swin Transfomer用于图像恢复!SwinIR的Pytorch源码复现,跑通源码,测试高斯去噪,使用预训练模型得到PSNR/SSIM以及去噪后图像!
  41. CVPR 2021)【图像去噪】论文精读:Pseudo 3D Auto-Correlation Network for Real Image Denoising(P3AN
  42. Machine Intelligence Research 2023)【图像去噪】论文精读:Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis(SCUNet
  43. Machine Intelligence Research 2023)【图像去噪】论文复现:Swin Transformer块助力图像去噪!SCUNet的Pytorch源码复现,跑通SCUNet源码,理论结构梳理,获得SCUNet去噪结果,可作为实验中的对比方法!
  44. ECCV 2020)【图像去噪】论文精读:Dual Adversarial Network: Toward Real-world Noise Removal and Noise Generation(DANet
  45. ECCV 2020)【图像去噪】论文复现:双对抗网络去除和生成逼真噪声!DANet的Pytorch源码复现,用于去噪和生成逼真噪声,训练、测试、损失函数、整体架构逻辑详解,图文结合,源码注释详细,单卡可跑!
  46. CVPR 2021)【图像去噪】论文精读:Invertible Denoising Network: A Light Solution for Real Noise Removal(InvDN
  47. CVPR 2021)【图像去噪】论文复现:小波变换产生高频信息保留的潜在状态!InvDN的Pytorch源码复现,跑通全流程源码,获取去噪结果,理论符号与源码变量一一对应,深入浅出,清晰易懂!
  48. ECCV 2020)【图像去噪】论文精读:Learning Enriched Features for Real Image Restoration and Enhancement(MIRNet
  49. ECCV 2020)【图像去噪】论文复现:全网最细!MIRNet的Pytorch源码复现全记录!论文中模型结构图与代码变量一一对应,保证看懂!踩坑报错复盘,一一排雷,Windows下也能轻松运行,代码逐行注释!
  50. CVPR 2021)【图像去噪】论文精读:Multi-Stage Progressive Image Restoration(MPRNet
  51. CVPR 2021)【图像去噪】论文复现:三阶段网络!MPRNet的Pytorch源码复现,跑通全流程,图文结合手把手教学,由大到小拆解网络结构,由小到大实现结构组合,结构示意图与代码变量一一对应,全部源码逐行注释!
  52. CVPR 2021)【图像去噪】论文精读:NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
  53. CVPR 2021)【图像去噪】论文复现:子空间投影提升去噪效果!NBNet的Pytorch源码复现,跑通代码,源码详解,注释详细,图文结合,补充源码中缺少的“保存去噪后的结果图像”代码,指出源码中模型实现的潜在问题
  54. Knowledge-Based Systems(KBS) 2022)【图像去噪】论文精读:Layered input GradiNet for image denoising(LIGN
  55. EUSIPCO 2022)【图像去噪】论文精读:SELECTIVE RESIDUAL M-NET FOR REAL IMAGE DENOISING(SRMNet
  56. EUSIPCO 2022)【图像去噪】论文复现:新手友好!SRMNet的Pytorch源码复现,跑通全流程源码,详细步骤,图文说明,注释详细,模型拆解示意图与代码一一对应,包能看懂,Windows和Linux下均可运行!
  57. CVPR 2021)【图像去噪】论文精读:Pre-Trained Image Processing Transformer(IPT
  58. CVPR 2021)【图像去噪】论文复现:底层视觉通用预训练Transformer!IPT的Pytorch源码复现, 跑通IPT源码,获得测试集上平均PSNR和去噪结果,可作为实验中的对比方法!
  59. ISCAS 2022)【图像去噪】论文精读:SUNet: Swin Transformer UNet for Image Denoising
  60. ISCAS 2022)【图像去噪】论文复现:Swin Transformer用于图像去噪!SUNet的Pytorch源码复现,训练,测试高斯噪声图像流程详解,计算PSNR/SSIM,Windows和Linux下单卡可跑!
  61. AAAI 2022)【图像去噪】论文精读:Generative Adaptive Convolutions for Real-World Noisy Image Denoising(FADNet
  62. CVPR 2020 Oral)【图像去噪】论文精读:CycleISP: Real Image Restoration via Improved Data Synthesis
  63. CVPR 2020 Oral)【图像去噪】论文复现:制作真实噪声图像数据集!CycleISP的Pytorch源码复现,跑通流程,可以用于制作自己的真实噪声图像数据集,由大到小拆解CycleISP网络结构,由小到大实现结构组合!
  64. CVPR 2021 Oral)【图像去噪】论文精读:Adaptive Consistency Prior based Deep Network for Image Denoising(DeamNet
  65. CVPR 2021 Oral)【图像去噪】论文复现:扎实理论提升去噪模型的可解释性!DeamNet的Pytorch源码复现,跑通全流程源码,模型结构图与源码对应拆解,补充源码中没有的保存图像代码!
  66. TCSVT 2022)【图像去噪】论文精读:Real Image Denoising via Guided Residual Estimation and Noise Correction(GrencNet
  67. TCSVT 2022)【图像去噪】论文复现:加入SimAM注意力迭代校正noise level map!GrencNet的Pytorch源码复现,得到去噪结果图像和PSNR/SSIM,模型结构搭建详解!
  68. AAAI 2020)【图像去噪】论文精读:When AWGN-based Denoiser Meets Real Noises(PD-Denoising
  69. AAAI 2020)【图像去噪】论文复现:用Pixel-shuffle构建高斯噪声与真实噪声之间的联系!PD-Denoising源码复现,跑通训练和测试代码,可得到去噪结果和PSNR,理论公式与源码对应,图文结合详解!
  70. CVPR 2022 Oral)【图像去噪】论文精读:MAXIM: Multi-Axis MLP for Image Processing
  71. NeurlPS 2021)【图像去噪】论文精读:Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware Adversarial Training(PNGAN
  72. NeurlPS 2021)【图像去噪】论文复现:生成逼真噪声图像!通用方法可用于其他模型微调涨点!PNGAN的Pytorch版本源码复现,详解PNGAN网络结构,清晰易懂,从源码理解论文公式!
  73. CVPR 2022)【图像去噪】论文精读:Uformer: A General U-Shaped Transformer for Image Restoration
  74. CVPR 2022)【图像去噪】论文复现:Modulator助力Transformer块校准特征!预训练模型可以下载啦!Uformer的Pytorch源码复现,图文结合全流程详细复现,源码详细注释,思路清晰明了!
  75. CVPR 2021)【图像去噪】论文精读:HINet: Half Instance Normalization Network for Image Restoration
  76. CVPR 2021)【图像去噪】论文复现:比赛夺魁!半实例归一化网络HINet的Pytorch源码复现,图文结合手把手复现,轻松跑通,HINet结构拆解与代码实现,结构图与代码变量一一对应,逐行注释!
  77. CVPR 2022 Oral)【图像去噪】论文精读:Restormer: Efficient Transformer for High-Resolution Image Restoration
  78. CVPR 2022 Oral)【图像去噪】论文复现:CVPR 2022 oral!Restormer的Pytorch源码复现,跑通训练和测试源码,报错改进全记录,由大到小拆解网络结构,由小到大实现模型组合,代码逐行注释!
  79. NeurIPS 2023)【图像去噪】论文精读:PromptIR: Prompting for All-in-One Blind Image Restoration
  80. NeurIPS 2023)【图像去噪】论文复现:即插即用模块!通过提示块提升Restormer模型性能!PromptIR的Pytorch源码复现,跑通源码,解决各种报错,获得去噪结果和指标,模型实现详解,示意图与源码对应!
  81. NeurIPS 2023)【图像去噪】论文精读:A Unified Conditional Framework for Diffusion-based Image Restoration(UCDIR
  82. CVPR 2023)【图像去噪】论文精读:Efficient and Explicit Modelling of Image Hierarchies for Image Restoration(GRL
  83. ICME 2023)【图像去噪】论文精读:DDT: Dual-branch Deformable Transformer for Image Denoising
  84. ECCV 2022)【图像去噪】论文精读:Simple Baselines for Image Restoration(NAFNet
  85. ECCV 2022)【图像去噪】论文复现:大道至简!NAFNet的Pytorch源码复现!跑通NAFNet源码,补充PlainNet,由大到小拆解NAFNet网络结构,由小到大实现结构组合,逐行注释!
  86. TIP 2024)【图像去噪】论文精读:Single Stage Adaptive Multi-Attention Network for Image Restoration(SSAMAN
  87. 【图像去噪】论文精读:KBNet: Kernel Basis Network for Image Restoration
  88. 【图像去噪】论文复现:补充KBNet训练过程!KBNet的Pytorch源码复现,全流程跑通代码,模型结构详细拆解,逐行注释!
  89. TMLR 2024)【图像去噪】论文精读:CascadedGaze: Efficiency in Global Context Extraction for Image Restoration(CGNet
  90. TMLR 2024)【图像去噪】论文复现:全网首发独家!CGNet的Pytorch源码复现,全流程跑通代码,训练40万次迭代,模型结构详细拆解,逐行注释,附训练好的模型文件,免费下载!
  91. PR 2024)【图像去噪】论文精读:Dual Residual Attention Network for Image Denoising(DRANet
  92. PR 2024)【图像去噪】论文复现:研究生发SCI范例!DRANet的Pytorch源码复现,高斯去噪和真实噪声去噪全流程详解,模型结构示意图与代码变量一一对应,注释详尽,新手友好,单卡可跑!
  93. Multimedia Systems 2024)【图像去噪】论文精读:Dual convolutional neural network with attention for image blind denoising(DCANet
  94. Multimedia Systems 2024)【图像去噪】论文复现:第一个双CNN+双注意力的去噪模型!DCANet的Pytorch源码复现,高斯去噪和真实噪声去噪全流程详解,模型结构示意图与代码变量一一对应,注释详尽,新手友好,单卡可跑!
  95. NN 2024)【图像去噪】论文精读:EWT: Efficient Wavelet-Transformer for Single Image Denoising
  96. CVPRW 2024)【图像去噪】论文精读:HNN: Hierarchical Noise-Deinterlace Net Towards Image Denoising
  97. ECCV 2024)【图像去噪】论文精读:DualDn: Dual-domain Denoising via Differentiable ISP
  98. 【图像去噪】论文精读:Restore-RWKV: Efficient and Effective Medical Image Restoration with RWKV
  99. ICLR 2024)【图像去噪】论文精读:Xformer: Hybrid X-Shaped Transformer for Image Denoising
  100. ICLR 2024)【图像去噪】论文复现:ICLR 2024!X型双分支U型Transformer结构!Xformer的Pytorch源码复现,跑通源码,解决报错,图文手把手教程,网络结构示意图与源码对应,注释详细!
  101. ECCV 2024)【图像去噪】论文精读:MambaIR: A Simple Baseline for Image Restoration with State-Space Model
  102. ECCV 2024)【图像去噪】论文复现:Man!what can I say?MambaIR的Pytorch源码复现,跑通全流程,轻松解决环境配置问题,图文结合按步骤执行傻瓜式教程,由大到小拆解网络,由小到大实现组合!
  103. CVPR 2025)【图像去噪】论文精读:MambaIRv2: Attentive State Space Restoration
  104. ICLR 2025)【图像去噪】论文精读:AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation
  105. CVPR 2025)【图像去噪】论文精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
  106. VISAPP 2025)【图像去噪】论文精读:AKDT: Adaptive Kernel Dilation Transformer for Effective Image Denoising
  107. VISAPP 2025)【图像去噪】论文复现:新型Transformer块!可学习扩张卷积用于噪声估计引导多头自注意力!AKDT的Pytorch源码复现,跑通源码,获得去噪结果和评价指标,网络结构实现详解,并计算模型复杂度!
  108. (CVPR 2025)【图像恢复】论文精读:MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
  109. (CVPR 2025)【图像去噪】论文复现:Mamba没Out!MaIR的Pytorch源码复现,跑通全流程,轻松解决环境配置问题,图文结合,明确MaIR创新点,与MambaIR对比,示意图与源码对应,清晰易懂,注释详细!

半监督、无监督、自监督、Zero-Shot、扩散模型(本质也是无监督)、其他领域应用到去噪任务

自监督之框架结构类科研推荐路径:自监督算法都跑出结果,跟自己改进的自监督框架对比,选择某些方法作为对比方法。

  1. CVPR 2018)【图像去噪】论文精读:Deep Image Prior(DIP
  2. CVPR 2018)【图像去噪】论文复现:扩散模型思想鼻祖!DIP的Pytorch源码复现,执行教程,代码解析,注释详细,只需修改图像路径即可测试自己的噪声图像!
  3. ICML 2018)【图像去噪】论文精读:Noise2Noise: Learning Image Restoration without Clean Data(N2N
  4. ICML 2018)【图像去噪】论文复现:倒反天罡!老思想新创意,无需Ground-truth!Pytorch实现无监督图像去噪开山之作Noise2Noise!附训练好的模型文件!
  5. CVPR 2019)【图像去噪】论文精读:Noise2Void-Learning Denoising from Single Noisy Images(N2V
  6. CVPR 2029)【图像去噪】论文复现:降维打击!图像对输入变成像素对输入!Pytorch实现Noise2Void(N2V),基于U-Net模型训练,简洁明了理解N2V核心思想!附训练好的灰度图和RGB图的模型文件!
  7. NeurIPS 2019)【图像去噪】论文精读:High-Quality Self-Supervised Deep Image Denoising(HQ-SSL
  8. PMLR 2019)【图像去噪】论文精读:Noise2Self: Blind Denoising by Self-Supervision(N2S
  9. PMLR 2019)【图像去噪】论文复现:自监督盲去噪!Noise2Self(N2S)的Pytorch源码复现,跑通源码,测试单图像去噪,解决了代码中老版本存在的问题,mask核心代码解析,注释清晰易懂!
  10. CVPR 2020)【图像去噪】论文精读:Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image(S2S
  11. CVPR 2020)【图像去噪】论文复现:单噪声图像输入的自监督图像去噪!Self2Self(S2S) 的Pytorch版本源码复现,跑通代码,原理详解,代码实现、网络结构、论文公式相互对应,注释清晰,附修改后的完整代码!
  12. CVPR 2020)【图像去噪】论文精读:Noisier2Noise: Learning to Denoise from Unpaired Noisy Data
  13. NeurIPS 2020)【图像去噪】论文精读:Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising
  14. TIP 2020)【图像去噪】论文精读:Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image(NAC
  15. CVPR 2021 Oral)【图像去噪】论文精读:FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise
  16. CVPR 2021 Oral)【图像去噪】论文复现:FBI open the door!又快又好,飞速盲自监督去噪!FBI-Denoiser的Pytorch源码复现,跑通源码,补充保存图像代码,二阶段框架详解,理论与源码对应!
  17. CVPR 2021)【图像去噪】论文精读:Recorrupted-to-Recorrupted: Unsupervised Deep Learning for Image Denoising(R2R
  18. CVPR 2021)【图像去噪】论文复现:一步破坏操作提升自监督去噪性能!R2R的Pytorch源码复现,跑通源码,获得评估指标和去噪结果,核心原理与代码详解,双系统单卡可跑,附训练好的模型文件!
  19. CVPR 2021)【图像去噪】论文精读:Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
  20. CVPR 2021)【图像去噪】论文复现:相邻像素子图采样助力自监督去噪学习!Neighbor2Neighbor的Pytorch源码复现,跑通及补充测试代码,获得去噪结果和PSNR/SSIM,与论文中基本一致,单卡可跑!
  21. ICCV 2021)【图像去噪】论文精读:C2N: Practical Generative Noise Modeling for Real-World Denoising
  22. ICCV 2021)【图像去噪】论文复现:无任何假设无监督模拟真实世界噪声!C2N的Pytorch源码复现,跑通测试源码,可以用于测试自己的数据集或单张图像,示意图与源码对应,注释详细,双系统均可运行!
  23. ICCV 2021)【图像去噪】论文精读:Rethinking Deep Image Prior for Denoising(DIP-SURE
  24. ICCV 2021)【图像去噪】论文复现:重新思考DIP!解决DIP不知道何时停止迭代的问题!DIP-SURE的Pytorch源码复现,跑通推理测试代码,图文结合,详细解释,核心损失与代码实现对应!
  25. ICLR 2021)【图像去噪】论文精读:An Unsupervised Deep Learning Approach for Real-World Image Denoising(NN+denoiser
  26. ICLR 2021)【图像去噪】论文复现:传统方法与深度学习方法结合的无监督去噪算法!单图像无监督去噪算法NN+denoiser的Pytorch源码复现,跑通源码,得到去噪结果和PSNR/SSIM,单卡可跑!
  27. NeurIPS 2021)【图像去噪】论文精读:Noise2Score: Tweedie‘s Approach to Self-Supervised Image Denoising without Clean Images
  28. CVPR 2022)【图像去噪】论文精读:Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching
  29. ICLR 2021)【图像去噪】论文精读:GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
  30. CVPR 2022)【图像去噪】论文精读:Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots(B2U
  31. CVPR 2022)【图像去噪】论文复现:将盲问题转成非盲问题!解决盲点网络会出现恒等映射的痛点!Blind2Unblind的Pytorch源码复现,跑通源码,获取结果,理论与源码一一对应,清晰易懂!
  32. Nature Machine Intelligence 2022)【图像去噪】论文精读:Noise2Fast: Fast Self-Supervised Single Image Blind Denoising(N2F
  33. Nature Machine Intelligence 2022)【图像去噪】论文复现:奇偶棋盘格下采样充分破坏真实噪声的空间相关性!零样本单噪声图像自监督去噪算法N2F的Pytorch源码复现,跑通源码,解决报错,框架解析!
  34. ECCV 2020)【图像去噪】论文精读:Unpaired Learning of Deep Image Denoising(DBSN
  35. ECCV 2020)【图像去噪】论文复现:膨胀卷积助力盲点网络自监督训练!DBSN的Pytorch源码复现,跑通源码,补充源码中未提供的保存去噪结果图像代码,获得PSNR/SSIM,原理公式示意图与代码对应!
  36. CVPR 2022)【图像去噪】论文精读:CVF-SID: Cyclic multi-Variate Function forSelf-Supervised Image Denoising by Disentangling Noise from Image
  37. CVPR 2022)【图像去噪】论文复现:循环分解噪声图像并增强!CVF-SID的Pytorch源码复现,跑通源码,解决报错,获取图像结果以及评估指标,框架示意图和损失函数公式与源码变量一一对应,注释详细!
  38. CVPR 2022)【图像去噪】论文精读:AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric PD and Blind-Spot
  39. CVPR 2022)【图像去噪】论文复现:非对称PD和R3后处理助力自监督盲点网络去噪!AP-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
  40. CVPR 2022)【图像去噪】论文精读:IDR: Self-Supervised Image Denoising via Iterative Data Refinement
  41. TPAMI 2022)【图像去噪】论文精读:Learn from Unpaired Data for Image Restoration: A Variational Bayes Approach(LUD-VAE
  42. TPAMI 2022)【图像去噪】论文复现:从未配对的clean-noisy中生成合成数据,模拟真实噪声!LUD-VAE的Pytorch源码复现,跑通源码,添加SIDD测试代码,框架结构和损失函数详解!
  43. IJCAI 2022)【图像去噪】论文精读:Towards Adversarially Robust Deep Image Denoising(OBSATK/HAT
  44. WACVW 2022)【图像去噪】论文精读:IDEA-Net: Adaptive Dual Self-Attention Network for Single Image Denoising
  45. ICCV 2023)【图像去噪】论文精读:Random Sub-Samples Generation for Self-Supervised Real Image Denoising(SDAP
  46. ICCV 2023)【图像去噪】论文复现:加入RSG扰动提升盲点网络BSN的性能!SDAP的Pytorch源码复现,跑通SDAP全流程源码,得到去噪结果图像和评估指标PSNR/SSIM,原理详解,注释详细,思路清晰!
  47. ICCV 2023)【图像去噪】论文精读:Score Priors Guided Deep Variational Inference for Unsupervised Real-World Single Image Denoising(ScoreDVI
  48. ICCV 2023)【图像去噪】论文精读:The Devil is in the Upsampling: Architectural Decisions Made Simpler for Denoising with Deep Image Prior(FasterDIP
  49. ICCV 2023)【图像去噪】论文复现:问题出在上采样上!改变架构解决DIP产生的光谱偏差,FasterDIP的Pytorch源码复现,跑通推理测试代码,图文结合,核心架构与代码对应!
  50. ICCV 2023)【图像去噪】论文精读:Iterative Denoiser and Noise Estimator for Self-Supervised Image Denoising(DCD-Net
  51. ICCV 2023)【图像去噪】论文精读:Self-supervised Image Denoising with Downsampled Invariance Loss and Conditional Blind-Spot Network(CBSN
  52. CVPR 2023)【图像去噪】论文精读:Zero-Shot Noise2Noise: Efficient Image Denoising without any Data(ZS-N2N
  53. CVPR 2023)【图像去噪】论文复现:大道至简!ZS-N2N的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与论文理论对应!
  54. CVPR 2023)【图像去噪】论文精读:Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising(BNN-LAN
  55. CVPR 2023)【图像去噪】论文复现:分区域提升盲点网络性能!BNN-LAN的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与理论公式一一对应!
  56. CVPR 2023)【图像去噪】论文精读:LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising
  57. CVPR 2023)【图像去噪】论文复现:双分支局部和全局特征提取自监督去噪盲点网络!LG-BPN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
  58. CVPRW 2023)【图像去噪】论文精读:MM-BSN: Self-Supervised Image Denoising for Real-World with Multi-Mask based on Blind-Spot Network
  59. CVPRW 2023)【图像去噪】论文复现:多形状掩码方案助力盲点网络提升性能!MM-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
  60. IJCAI 2023)【图像去噪】论文精读:SS-BSN: Attentive Blind-Spot Network for Self-Supervised Denoising with Nonlocal Self-Similarity
  61. IJCAI 2023)【图像去噪】论文复现:自相似注意力提升盲点网络性能!SS-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
  62. CVPR 2023)【图像去噪】论文精读:Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
  63. NeurIPS 2023)【图像去噪】论文精读:PUCA: Patch-Unshuffle and Channel Attention for Enhanced Self-Supervised Image Denoising
  64. NeurIPS 2023)【图像去噪】论文复现:Pixel-Unshuffle秒变Patch-Unshuffle!PUCA的Pytorch源码复现,跑通源码,获得去噪结果和评价指标,结构图与源码实现相对应,轻松理解,注释详细!
  65. ICCV 2023)【图像去噪】论文精读:Unsupervised Image Denoising in Real-World Scenarios via Self-Collaboration Parallel Generative Adversarial Branches(SCPGabNet
  66. ICCV 2023)【图像去噪】论文复现:迭代替换去噪器合成更优的噪声分布!SC策略助力非配对无监督GAN去噪!SCPGabNet的Pytorch源码复现,跑通源码,添加保存图像代码,框架结构和损失函数详解!
  67. TCSVT 2023)【图像去噪】论文精读:Toward Interactive Self-Supervised Denoising
  68. ICML 2024)【图像去噪】论文精读:Residual-Conditioned Optimal Transport: Towards Structure-Preserving Unpaired and Paired Image Restoration(RCOT
  69. ECCV 2024)【图像去噪】论文精读:Asymmetric Mask Scheme for Self-Supervised Real Image Denoising(AMSNet
  70. ECCV 2024)【图像去噪】论文复现:灵感源自MAE!进一步解决BSN的局限性,破坏真实噪声的空间相关性!AMSNet的Pytorch源码复现,跑通源码,原理详解!
  71. TPAMI 2024)【图像去噪】论文精读:Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling(DMID
  72. TPAMI 2024)【图像去噪】论文复现:扩散模型用于图像去噪!DMID的Pytorch源码复现,跑通测试流程,结构梳理和拆解,理论公式与源码对应,注释详细, Window和Linux下单卡均可运行!
  73. CVPR 2024)【图像去噪】论文精读:LAN: Learning to Adapt Noise for Image Denoising
  74. CVPR 2024)【图像去噪】论文复现:改变输入噪声分布去适应冻结的预训练网络以实现匹配!LAN源码复现,跑通源码,补充保存去噪结果图像代码,获得评估指标,原理详解!
  75. CVPR 2024)【图像去噪】论文精读:Masked and Shuffled Blind Spot Denoising for Real-World Images(MASH
  76. CVPR 2024)【图像去噪】论文复现:基于盲点网络的单图像去噪新方法!MASH的Pytorch源码复现,跑通源码,补充保存去噪结果图像代码,计算数据集的平均PSNR/SSIM,公式与代码变量对应,详细解析!
  77. CVPR 2024)【图像去噪】论文精读:Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios(AT-BSN
  78. CVPR 2024)【图像去噪】论文复现:非对称可调盲点+蒸馏提升BSN网络性能!AT-BSN的Pytorch源码复现,跑通全流程源码,得到去噪结果图像和PSNR/SSIM,结构示意图与源码实现对应,注释详细,思路清晰!
  79. NeurIPS 2024)【图像去噪】论文精读:Diffusion Priors for Variational Likelihood Estimation and Image Denoising(DiffusionVI
  80. NeurIPS 2024)【图像去噪】论文复现:反向扩散中加入MAP将扩散模型从高斯去噪推广到真实去噪!DiffusionVI的Pytorch源码复现,跑通源码,梳理理论,单卡可执行!
  81. NeurIPS 2024)【图像去噪】论文精读:Masked Pre-training Enables Universal Zero-shot Denoiser(MPI
  82. NeurIPS 2024)【图像去噪】论文复现:掩码后的自然图像预训练模型用于单噪声图像推理!Zero-shot算法MPI的Pytorch源码复现,跑通源码,图文保姆级教程,框架结构与代码对应,注释详细!
  83. CVPR 2024)【图像去噪】论文精读:SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder
  84. IET Image Processing 2024)【图像去噪】论文精读:Noise2Variance: Dual networks with variance constraint for self-supervised real-world image denoising
  85. AAAI 2025)【图像去噪】论文精读:Rethinking Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising(TBSN
  86. AAAI 2025)【图像去噪】论文复现:Transfomer块增大自监督去噪盲点网络感受野!TBSN的Pytorch源码复现,跑通全流程,获取指标计算结果,补充保存图像代码,模型结构示意图与源码实现一一对应,思路清晰!
  87. AAAI 2025)【图像去噪】论文精读:Prompt-SID: Learning Structural Representation Prompt via Latent Diffusion for Single-Image Denoising
  88. ICLR 2025)【图像去噪】论文精读:Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration(Noise-DA
  89. CVPR 2025)【图像去噪】论文精读:Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
  90. TPAMI 2025)【图像去噪】论文精读:Pixel2Pixel: A Pixelwise Approach for Zero-shot Single Image Denoising
  91. TPAMI 2025)【图像去噪】论文复现:此Pixel2Pixel非彼Pix2Pix,提升泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
  92. WACV 2025 Oral)【图像去噪】论文精读:Design Principles of Multi-Scale J-invariant Networks for Self-Supervised Image Denoising(UBSN
  93. WACV 2025 Oral)【图像去噪】论文复现:打破强制J不变性限制,提出U形结构的盲点网络!自监督盲点网络UBSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
  94. ArXiv 2025)【图像去噪】论文精读:A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
  95. ArXiv 2025)【图像去噪】论文精读:Fractal-IR: A Unified Framework for Efficient and Scalable Image Restoration
  96. ArXiv 2025)【图像去噪】论文精读:Diffusion Image Prior(DIIP
  97. ArXiv 2025)【图像去噪】论文精读:Unsupervised Real-World Denoising: Sparsity is All You Need(MID
  98. WACV 2025)【图像去噪】论文精读:SwinIA: Self-Supervised Blind-Spot Image Denoising with Zero Convolutions

OOD泛化

  1. CVPR 2023)【图像去噪】论文精读:Masked Image Training for Generalizable Deep Image Denoising(MaskedDenoising
  2. CVPR 2024)【图像去噪】论文精读:Robust Image Denoising through Adversarial Frequency Mixup(AFM
  3. CVPR 2024)【图像去噪】论文复现:提高真实噪声去噪模型的泛化性!AFM的Pytorch源码复现,跑通AFM源码全流程,图文结合,网络结构拆解,模块对应源码注释,源码与论文公式对应!
  4. arXiv 2024)【图像去噪】论文精读:Learning to Translate Noise for Robust Image Denoising
  5. arXiv 2024)【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
  6. CVPR 2024)【图像去噪】论文精读:Transfer CLIP for Generalizable Image Denoising(CLIPDenoising
  7. CVPR 2024)【图像去噪】论文复现:CLIP用于图像去噪提升泛化性!CLIPDenoising的Pytorch源码复现,跑通CLIPDenoising全流程,图文结合,网络结构梳理和拆解,对应源码注释!
  8. ECCV 2024)【图像去噪】论文精读:TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts

和其他领域结合

去噪模型通常用于医学图像(主要包含MRI、PET Image、CT Image、Pathological Image)、荧光显微图像(fluorescence microscopy images, FMI)高光谱图像(Hyperspectral Image, HSI)、遥感图像/无人机(Remote Sensing Image, RSI/UAV)、电镜图像(EM、TEM、SEM image)、红外图像(infrared image, RGB-NIR近红外)、低光图像(Low-light image)、水下声纳(Underwater Sonar Image)、雷达图像(Synthetic Aperture Radar, SAR)等。其中,红外图像去噪偏【图像融合】领域,低光图像去噪偏【图像增强】领域

可以按关键词寻找对应的文章,需要复现的论文可以评论区留言,我添加到专栏中。

上述通用的去噪算法基本都适用于其他领域的图像,大家灵活变通,从特定场景的图像特征入手。

  1. 高光谱图像、遥感图像)【图像去噪】论文精读:Attention-Based Octave Network for Hyperspectral Image Denoising(AODN
  2. 遥感图像,TGRS 2023)【图像去噪】论文精读:Dynamic Adaptive Attention-Guided Self-Supervised Single Remote-Sensing Image Denoising
  3. 高光谱图像,CVPR 2024)【图像去噪】论文精读:Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising
  4. SEM图像)【图像去噪】论文精读:Denoising of scanning electron microscope images for biological ultrastructure enhancemen
  5. 医学图像,MICCAI 2021)【图像去噪】论文精读:Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging(D2S
  6. 医学图像,MICCAI 2021)【图像去噪】论文复现:天秀空间变换!匹配同一场景不同时间帧图像内容,可以多图像输入!端到端动态成像自监督去噪框架D2S的Pytorch源码复现,跑通源码,图文展示,框架拆解,注释详细!
  7. 医学图像,MICCAI 2022)【图像去噪】论文精读:Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image
  8. 医学图像,MICCAI 2024)【图像去噪】论文精读:WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising
  9. 荧光显微镜图像,MICCAI 2022)【图像去噪】论文精读:Noise2SR: Learning to Denoise from Super-Resolved Single Noisy Fluorescence Image(N2SR
  10. 荧光显微镜图像,MICCAI 2022)【图像去噪】论文复现:超分思想助力荧光显微图像自监督去噪!N2SR的Pytorch源码复现,图文详细教程跑通源码,框架结构原理示意图与代码对应,注释详细,补充三个实用功能代码!
  11. 荧光显微镜图像,Nature Computational Science 2023)【图像去噪】论文精读:Spatial redundancy transformer for selfsupervised fluorescence image denoising(SRDTrans
  12. 电镜图像,TCL 2024)【图像去噪】论文精读:Zero-Shot Image Denoising for High-Resolution Electron Microscopy
  13. 医学图像,MICCAI 2024)【图像去噪】论文精读:Region Attention Transformer for Medical Image Restoration(RAT
  14. 医学图像)【图像去噪】论文精读:CTformer: Convolution-free Token2Token Dilated Vision Transformer for Low-dose CT Denoising
  15. 医学图像,arXiv 2025)【图像去噪】论文精读:CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising
  16. 荧光显微镜图像,arXiv 2024)【图像去噪】论文精读:FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
  17. 荧光显微镜图像,arXiv 2024)【图像去噪】论文复现:速度飞快,大道至简,额外的泊松-高斯噪声助力性能提升!专门为FMI涉及的自监督单图像去噪方法,FM2S的Pytorch源码复现,跑通源码,框架解析,补充相关实用代码!
  18. RGB-NIR,AAAI 2022)【图像去噪】论文精读:DarkVisionNet: Low-Light Imaging via RGB-NIR Fusion with Deep Inconsistency Prior(DVN
  19. RGB-NIR,CVPR 2023 )【图像去噪】论文精读:Structure Aggregation for Cross-Spectral Stereo Image Guided Denoising(SANet
  20. RGB-NIR,TMM 2024,新数据集 )【图像去噪】论文精读:NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Data
  21. RGB-NIR,CVPR 2025 )【图像去噪】论文精读:Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
  22. 医学图像,arXiv 2025)【图像去噪】论文精读:DiffDenoise: Self-Supervised Medical Image Denoising with Conditional Diffusion Models
  23. 医学图像,TIM 2025)【图像去噪】论文精读:SDCNN: Self-Supervised Disentangled Convolutional Neural Network for Low-Dose CT Denoising
  24. 医学图像,arXiv 2025)【图像去噪】论文精读:Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering

论文相关

  1. 【高效科研】超分辨率重建/图像去噪等CV论文实验部分的视觉比较(Visual comparison)—— 制作局部放大图!全代码自动化实现!鼠标框选区域!只需修改图像路径!无需使用PPT或PS!四种方法让你得心应手!
  2. 【高效科研】使用PPT绘制超分辨率重建/图像去噪等CV论文中的网络结构示意图!附多个自绘的主流网络模型模板!各个模块随取随用!
  3. 【高效科研】超分/去噪等领域通用论文写作提纲,包括每个部分详细撰写、图表制作、参考文献BibTeX格式、latex使用等,附参考写作流程,写作心得!

研究方向

  • 有监督:
    • 高斯去噪AWGN和真实世界噪声去噪,将新模块、各种即插即用模型应用到框架中,提升模型性能,追求SOTA;
    • 不追求模型改进,而是某一种通用方法可以提升模型性能,适用于通用模型;
  • 非监督:
    • 盲点网络BSN路线,进一步改进盲点网络,提升性能,追求SOTA;
    • 自监督模型框架路线,想办法破坏真实噪声的空间相关性,构建损失;
    • 理论建模(贝叶斯变分推理、diffusion等),问题转化,使其适用于去噪任务;
  • 其他:
    • OOD泛化;
    • 模拟真实世界噪声,生成逼真噪声;

建议:明确自己任务目的,发论文明确目标区位,做项目明确首要任务,以此来学习最相关的文章。

前沿资讯

  1. 【图像去噪】前沿资讯:第十届NTIRE 2025图像去噪挑战报告,一大批CVPRW论文即将来袭!

资料汇总(持续更新中。。。)

数据集:

  1. BSD:https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
  2. CBSD68:https://github.com/clausmichele/CBSD68-dataset
  3. Nam:http://snam.ml/research/ccnoise(已失效,可以从https://github.com/csjunxu/MCWNNM-ICCV2017中找到)
  4. Waterloo Exploration Database(WED): https://kedema.org/project/exploration/index.html
  5. 汇总:https://blog.csdn.net/iteapoy/article/details/86062640
  6. DND:https://noise.visinf.tu-darmstadt.de/
  7. McMaster:https://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
  8. SIDD:https://abdokamel.github.io/sidd/
  9. PolyU:https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset
  10. DIV2K:https://data.vision.ee.ethz.ch/cvl/DIV2K/
  11. RENOIR:https://ani.stat.fsu.edu/~abarbu/Renoir.html
  12. NIND:https://commons.wikimedia.org/wiki/Natural_Image_Noise_Dataset
  13. ImageNet验证集:https://image-net.org/challenges/LSVRC/2012/2012-downloads.php
  14. AAPM数据集(CT图像):https://www.aapm.org/GrandChallenge/LowDoseCT/
  15. LDCT:https://www.cancerimagingarchive.net/collection/ldct-and-projection-data/
  16. CC15、HighISO、IOCI:https://drive.google.com/drive/folders/17AUCJnENPGtHmQKw-gKcVbNCuj-lcyge
  17. SenseNoise500(来自论文IDR):https://github.com/zhangyi-3/IDR?tab=readme-ov-file
  18. MIT-Adobe FiveK Dataset(5000张):
  19. 荧光显微镜图像数据集:
  1. Transmission electron microscopy (TEM)数据集:https://github.com/sreyas-mohan/electron-microscopy-denoising
  2. Real STEM Data:https://america.iza-structure.org/IZA-SC/ftc_table.php
  3. 遥感图像数据集:

注:数据集耐心点搜都能找到,优先官方下载,有的官方失效了在Github上找(可能在某个论文的源码中)。

综述:

2023年:A Comparison of Image Denoising Methods
2020年:Deep Learning on Image Denoising: An overview

问题汇总(持续更新中。。。)

  1. 没有图像处理基础、深度学习基础、代码能力弱、英语也不太好能看懂专栏内文章吗?
    答:可以,但初期会比较吃力,先复现几篇简单的文章,全力搞懂代码,多学多积累很快就能上手。
  2. xxx型号的GPU xxG显存够用吗?
    答:根据你的实际情况配置GPU,实验室什么条件就用什么,实验室提供不了选择租卡比较划算,因为可以根据模型大小、数据集大小、源码参数设置等灵活选择卡数。不建议个人配置Windows显卡,因为大多数论文的实验环境都是Linux,而且单卡在模型复杂度较大时显存会不够用。

与我联系

图像去噪交流群(QQ):1037809432
VX:shixiaodayyds(可加微信交流群/专栏咨询,请注明来意,已订阅的备注CSDN昵称)

公众号

关注下方👇公众号【十小大的底层视觉工坊】,公众号将更新精炼版论文,帮助你用碎片化时间快速掌握论文核心内容。

### Mamba Air IT Technology 查询 Mamba 和 Air 是两个常见的术语,在不同的上下文中可以指代多种技术和产品。以下是关于这两个关键词的一些解释: #### 关于 Mamba 的技术含义 在 IT 领域,“Mamba” 可能指的是以下几种情况之一: 1. **Anaconda Distribution 中的工具** Mamba 是 Anaconda 发布的一个快速替代品,用于管理 Python 软件包和环境[^3]。它是一个命令行工具,旨在加速 Conda 的依赖解析过程并提高性能。 示例安装代码如下所示: ```bash conda install mamba -c conda-forge ``` 2. **网络安全领域中的工具或框架** 在某些情况下,“Mamba” 还可能被用作一种网络扫描器或者渗透测试工具的名字。 #### 关于 Air 的技术含义 “AIR” 或 “air” 在 IT 技术中有多个潜在意义: 1. **Apple 设备生态系统** Apple 使用 AIR 命名其许多无线连接功能的产品线,例如 AirPods、AirDrop 和 AirPlay 等[^4]。 2. **Adobe AIR 平台** Adobe Integrated Runtime (AIR) 是由 Adobe 开发的一种跨平台运行时环境,允许开发者创建桌面应用程序,并支持 HTML、JavaScript、Flash 和 ActionScript 编程语言[^5]。 3. **云计算概念** 在一些云服务提供商的技术文档中,“Air” 也可能代表轻量级的服务模式或者是特定类型的虚拟化解决方案的一部分。 #### 结合两者的情况分析 如果提到的是“Mamba Air”,这可能是某种组合名称,具体取决于实际应用场景。比如某个基于 Mamba 工具链优化后的云端部署方案称为“Mamba Air”。然而目前并没有广泛认可的标准定义来确切描述这样一个复合词组所特指的内容。 ```python import mamba.core.runtime as runtime runtime.init() print("Mamba environment initialized.") ```
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值