文章目录
前言
请先思考几个问题:
- 你是否在全网苦寻【图像去噪(Image Denoising)】的相关资料?
- 你的目标是否是看懂【图像去噪(Image Denoising)】的相关论文,复现代码,跑出结果,并试图创新?
- 你是否需要发表【图像去噪(Image Denoising)】的相关论文毕业?
- 你是否需要做【图像去噪(Image Denoising)】的相关项目,开发软件,研究算法,获得专利或者软著?
- …
只要是与【图像去噪(Image Denoising)】有关的问题,那么请继续往下看。
以刚读研的研究生为例,进组后导师让你研究与【图像去噪(Image Denoising)】的相关课题,但又没有时间指导你,只能自己研究。
这个时候你该怎么办呢?刚入门的小白,什么也不了解,只能是自己搜集资料或者问师兄师姐。
如果你问师兄师姐,怎么搞科研啊?如何看懂论文啊?如何读懂复杂的代码啊?
他们大概率会回复你:硬啃。一句一句地读论文呢,一行一行地理解代码。无他,唯手熟尔。
你摇了摇头,觉得他们“自私”,没有把“看家本领”传授于你。于是,你开始像无头苍蝇一样,试图寻找好的学习方法,希望通过一种好的学习方法来提升科研效率。
想法很好,但浪费时间和精力,而且没有开始真正的学习,只是在学习的边缘徘徊。其实,就差一步,管它科研难不难,学就完事了。
学习无捷径,大道至简,先学起来,再慢慢修正学习路线,最后到达顶峰。
很幸运你看到了本文,本专栏的意义就在于用我走过的路,带领你开始学习,避免“找方法找资料”这种费时费力的弯路。领先实验室同门,早发论文,早做项目,受导师青睐,尽早达到毕业要求好去实习。
三年时间转瞬即逝,必须马上开始!而你要做的,只是认认真真的读完每一篇专栏内的文章即可,相信你一定会有收获,科研能力越来越强,顺利完成你的目标。
说点肺腑之言,感兴趣的话继续往下看。
适配人群
急需入门【图像去噪(Image Denoising)】的朋友,具体为:
- 看不懂论文、写不出代码、无创新思路的新手小白,希望快速入门
- 课题与去噪相关,需要发论文毕业的本科生和研究生(硕士、博士),缺乏科研能力以及论文写作经验的实验室难兄难弟
- 导师放养,不知道选择哪个方向入手的迷茫者
- 需要论文、专利、软著等评职称的相关人员
- 有做去噪相关项目的本科生、研究生(硕士、博士)、企业开发人员、算法工程师等
如果你符合上面的某一条,不用担心,继续往下看即可。
专栏简介
专栏名称暂定为【Pytorch深度学习图像去噪算法100例】。顾名思义,共三点限制:
- 专栏内涉及的算法都是基于深度学习的图像去噪算法。非深度学习的可能只介绍BM3D,用做实验对比方法的baseline(类似超分的Bicubic)。
- 所有算法都是基于Pytorch框架实现的。论文公开的源码是Pytorch的我们就基于源码复现,不是用Pytorch框架实现或者未公开源码的算法,我会用Pytorch重新复现一遍,以达成代码的统一,方便大家做实验。
- 图像去噪领域顶刊顶会文章精选100篇论文,复现100个源码(已达成,持续更新中)。
专栏内文章主要为两部分:【论文精读】与【论文复现】
-
论文精读:读懂论文,总结提炼,聚焦核心内容,不只是全文翻译
-
论文复现:跑通流程,源码解析,提升代码能力,得到去噪结果以及指标计算
综合而言,从大到小拆解模型结构,从小到大实现模型搭建。实现论文与源码的统一,深入理解论文行文逻辑与代码实现逻辑,融汇贯通二者思想,并学以致用。
更具体详细的内容见“阅读方法”。
专栏亮点
- 省时:图像去噪领域论文全覆盖,算法模型全,主流的算法模型都会涉及结合能搜集到的资料深入浅出解读,按顺序阅读即可,节省搜论文的时间。【论文复现】文章末尾会提供训练好各放大倍数下的最优性能(PSNR/SSIM)模型权重文件,读者可以下载直接使用,方便论文中实验部分方法对比(视觉效果和量化指标)或直接应用模型超分自己的图像数据。
- 省力:大白话讲解,手把手教学,带你读懂论文,跑通代码,提升代码能力,理解文章的算法和创新点,避免一个人对着论文死磕但还是不理解的情况出现。按部就班,肯定能跑出好的模型结果,帮助你了解论文内容和结构,积少成多,学会写论文。同时,让你少走弯路,避免模型调参四处碰壁,涉及的模型都提供训练好的权重文件,可以直接拿来测试自己的图像。
- 省事:努力做全网最全最好最详细的【图像去噪】专栏,专栏永久更新,第一时间更新最新的图像去噪领域,关注订阅后一劳永逸,关注账号后更新了会私信告知。有问题可以随时留言交流。
阅读方法
【论文精读】 文章结构按照论文的结构包含全文翻译、关键信息提炼,信息总结等。原文中的重点内容以黑色加粗呈现,我自己的总结和注解以红色加粗和绿色加粗呈现。阅读和之前工作相比创新改进的地方,如网络结构(重点)、损失函数等。
根据自身情况,选择以下 【论文精读】 的阅读方式:
- 有写论文需求的朋友:对照原论文,全文阅读。除了看懂论文提出的方法外,还需要培养“讲故事”能力,深化论文细节,为论文写作做准备。
- 想快速理解文章的朋友:略读文章翻译部分,重点看加粗红字的提炼总结。
- 只想了解文章创新:看摘要和介绍部分末尾提出的创新贡献+网络结构,然后直接跳转到文末的复现文章。
上述三种情况对应的论文结构:
- Abstract (1、2、3;无论哪种情况都应该看摘要)
- Introduction(1、2;搞懂motivation,找创新思路)
- Related Work(1)
- The Proposed Method(1、2、3;1全看,2和3看重点)
- Experimental(1;实验部分重点在对应的【论文复现】文章中)
- Conclusion (1)
补充:如果你符合第一种情况,那么应该以审稿人的角度来看文章。如果你是审稿人,你会先看哪里,后看哪里,重点看哪里,以及给这篇文章什么审稿结果?问题的答案就是你在写论文的时候应该注意的东西。
【论文复现】 文章结构:
- 跑通代码:拿到任何一个代码项目,首先要做的就是根据README.md先跑通,【复现】文章的第一部分就相当于README,即使用手册。每篇复现文章的第一部分均是详细的跑通步骤,包括设置配置文件、设置数据集和预训练模型路径、需要的依赖库、报错解决等。根据路径放置好数据集,跑通训练代码,训练完跑通测试代码。如果有已经训练好的模型,可以直接推理测试。
- 代码解析:详细讲解全部代码,注释丰富,网络结构以及相关参数与论文一致。代码结构一般为数据预处理、网络结构实现、训练、测试、其他补充代码。重点在于网络结构以及特殊损失函数的实现,其他部分大同小异。尽量复现出与原论文一致的结果。
- 总结与思考:记录复现过程中遇到的问题,思考可能的改进提升。附带完整代码和训练好的模型权重文件下载链接。
根据自身情况,选择以下 【论文复现】 的阅读方式:
- 只需要结果(去噪后的结果图像、计算测试集指标PSNR/SSIM):只看1. 跑通代码
- 为了提升代码能力,实现论文与代码对应,改进结构:1.2.3全看
定价理由
专栏原价399.9,目前特价299.9,订阅满150人恢复原价,先到先得!!!
为什么选择本专栏?
- 和其他能搜到的去噪专栏相比,本专栏文章数量更多,质量更高。预计更新100个图像去噪算法,每个经典算法两篇文章(精读+复现),无源码文章一篇精读,还有其他基础知识、论文写作等文章,专栏预计总共更新250篇文章,平均每篇文章的价格为299.9/250 ≈ 1.19元,文章保质保量,专栏文章平均质量分为96。少吃半顿海底捞,就能解决一个大麻烦。
排行榜登顶:
其他兄弟专栏:
- 以硕士期间从研一到研二下学期一年半180天发出小论文计算,平均每天为299.9/180 = 1.66。也就是说,每天只花1.66元就可以获得一个一劳永逸的学习专栏,何乐而不为?对发论文、研究算法、做项目、以后找工作都有帮助,很快就可以回本。
- 以时间计算,180天只需每天花一小部分时间复现一篇论文,努力一下可以复现两篇,何况也不一定专栏内所有文章都看。试想一下,当其他人还在花费大量时间啃论文啃代码焦头烂额时,你已经不费吹灰之力,领先于人了。
- 为知识付费,为学习投资,形成知识体系,提升代码能力,还可以拓展人脉(私信我或加本文【与我联系】章节中的VX加交流群,订阅后可加订阅群),潜在价值远非价格可比。
- 避免毕业困难,自信受挫,失去学习热情
品质承诺
- 【论文精读】和【论文复现】文章保质保量。文章质量参考两篇DnCNN的置顶文章,请先试读:
【图像去噪】论文精读:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising(DnCNN)
【图像去噪】论文复现:新手入门必看!DnCNN的Pytorch源码训练测试全流程解析!为源码做详细注释!补充DnCNN-B和DnCNN-3的模型训练和测试!附各种情况下训练好的模型权重文件! - 订阅后永久免费阅读专栏内全部文章,免费获取专栏内全部代码。
- 专栏内文章如不符合上述试读文章的质量,可全额退款,无任何风险。其他情况不予退款。
关于更新
本专栏永久更新。为了保证文章质量,更新速度会慢一些。更新了会群发消息通知,所以请订阅专栏的朋友一定要关注我,否则收不到更新通知。
关于答疑
订阅专栏后私信我加订阅群!交流群在
宗旨:先仔细阅读文章,有问题再问。
基础薄弱的同学先学深度学习基础,搞明白框架和执行逻辑,重点为pytorch(数据处理DataLoader、模型实现nn、训练相关)、cv2和PIL等图像处理基础,有的问题搜一搜,查一查,把基础打好。
欢迎提出以下问题:
- 专栏内文章中出现的错误和表意不明的内容;
- 代码报错;
- 与算法模型相关的讨论,改进等;
- 希望我后续出的文章,方向,功能需求等;
- 友好的讨论,各种方面都可以,论文、投稿、读研读博、当老师等;
符合以上条件的,我知无不言,作为一名高校教师,我很愿意和友好的学生沟通!工作很忙,空闲时间看见了就会回复。
以下评论和问题不回:
- 不友好的攻击与谩骂,没有礼貌的;比如:“这么简单的东西还收费”。你觉得简单,还有很多需要入门的小伙伴不觉得简单,不要用你的标准来评判他人;
- 不看文章一通乱问的;答案就在文章中,仔细阅读,文章写的很细致,问我我给你回答没有你仔细阅读效率高;
- 表述不明,完全不知所云的;不明白你的问题,自然无法解答;
- 上来就要代码的,想白嫖的,套话的;不要问我这个方案可不可以,能不能给个创新idea等厚脸皮的话。一切都要自己动手做,去试了才知道,谁有好的想法不都自己发文章了吗,还能告诉你吗?
- 我也不会的;我不是神仙什么都会,可以讨论,但不能要求我一定能回答上;
订阅专栏后的答疑是作为附加的增值服务,我没有义务什么离谱的问题都回答你,即使你花了钱也不行,每个人的标准不同,求同存异,友好相处,有问题有意见可以提,但别找骂。
环境配置
项目环境:
- 编译器:pycharm
- cuda:torch 1.12.1
- 操作系统:windows11本地运行(RTX 4070Ti Super)本地运行或Linux服务器(4个Titan RTX GPU)
只要不是太差的显卡,专栏内的算法都可以跑。
不建议CPU运行。
复现文章中提供的代码在Windows和Linux下均可运行!
去噪概述
噪声主要分为两类:
-
合成噪声(Synthetic Noise),一般指在“干净”图像上添加高斯白噪声(Additive White Gaussian Noise,AWGN)
-
真实噪声(Real Noise),即相机拍照时图像上的真实噪声。一般以真实图像作为带噪图像输入,mean作为Ground-truth。
对应噪声分类,产生了两个不同的研究方向以及算法:
- 基于合成噪声:一般是高斯白噪,便于量化和设计实验;如DnCNN,FFDNet
合成噪声去噪示例:
- 基于真实噪声:真实世界的盲去噪问题,真实图像的噪声分布是未知的,可能是某些不同噪声类型和分布的叠加。有用泊松-高斯模拟,用ISP相机产生噪声的原理模拟等,属于摸着石头过河,需要很强的统计学、图像信号功底;如CBDNet,RIDNet,VDNnet
真实噪声去噪示例:
SIDD数据集上SOTA方法视觉效果大对比:
- 以及两者通用的算法。
文章目录
专栏内文章包含四大部分基础知识、数据集相关、去噪算法、论文相关。
其中,
- 基础知识包含深度学习基础、图像处理基础、指标计算、标准库使用;
- 数据集相关文章包含不好处理的数据集制作、读取、裁剪等;
- 去噪算法大体分为监督和非监督两类,监督类模型数据集中包含Ground-Truth,非监督一般没有Ground-Truth。此外,还有一些其他小方向的文章和与其他领域结合的文章;
- 论文相关包含科研绘图(神经网络结构图模板、视觉展示的局部放大图)、论文写作提纲;
文章目录按照科研顺序排列:打基础 → 处理好数据集 → 算法模型 → 写论文。
全流程保姆级安排,一个专栏即可毕业!
去噪算法目录按年份和模型性能综合排序,按顺序阅读。
基础知识
- 【图像去噪】基础知识之框架概述 | 图像去噪任务代码实现的通用框架,包括数据预处理、模型实现、训练、验证、测试等
- 【图像去噪】基础知识之图像流 | 图像从输入到输出的前世今生,包括类型变化、维度变化、数值变化等
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
- 【图像去噪】基础知识之量化评估指标 | 图像去噪任务量化评价指标介绍,包括PSNR、SSIM、NIQE、LPIPS
- 【图像去噪】基础知识之计算效率 | 计算模型复杂度(MACs,Flops以及单位缩放)和参数量
- 【图像去噪/超分】基础知识之BasicSR | BasicSR库的用法详解,包含各部分代码功能详细介绍(全代码注释),自己改进创新需要修改的位置等
- 【图像超分/图像去噪】Windows下使用BasicSR训练和测试模型
数据集相关
- 【图像去噪】实用小技巧 | 使用matlab将.mat格式的图像转成.png格式的图像,适用于DnD数据集的转换,附DND图像形式的数据集
- 【图像去噪】实用小技巧 | 制作SIDD训练集(SIDD-Medium),将320张SIDD原始图像对裁剪成训练所需的96000个256×256的图像块
- 【图像去噪】实用小技巧 | 使用matlab将.mat格式的SIDD验证集转成.png格式的图像块,附图像形式的SIDD验证集
去噪算法
核心精炼大合集:【图像去噪】耗时999999个小时!一次看个够!专栏内100个去噪算法大合集,理论速览,核心精炼!内含每篇文章的参考文献Bib格式,论文写作必备!随取随用!(持续更新中)
有监督
有监督之模型改进类科研推荐路径:都跑通结果,跟自己提出的模型对比,选择一些作为对比方法。
- (TIP 2017)【图像去噪】论文精读:Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising(DnCNN)
- (TIP 2017)【图像去噪】论文复现:新手入门必看!DnCNN的Pytorch源码训练测试全流程解析!为源码做详细注释!补充DnCNN-B和DnCNN-3的模型训练和测试!附各种情况下训练好的模型权重文件!
- (TIP 2018)【图像去噪】论文精读:FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising
- (TIP 2018)【图像去噪】论文复现:适合新手小白的Pytorch版本FFDNet复现!详解FFDNet源码!数据处理、模型训练和验证、推理测试全流程讲解!新手小白都能看懂,学习阅读毫无压力,去噪入门必看!
- (TPAMI 2019)【图像去噪】论文精读:Denoising Prior Driven Deep Neural Network for Image Restoration(DPDNN)
- (CVPRW 2019)【图像去噪】论文精读:CVPRW 2019 | Deep Iterative Down-Up CNN for Image Denoising(DIDN)
- (CVPRW 2019)【图像去噪】论文复现:深度迭代Down-Up网络,图像去噪新手入门必学项目!DIDN的Pytorch源码复现,跑通全流程,原理与复现详解,网络结构示意图与代码变量一一对应,双系统单卡可跑!
- (CAAI Transactions on Intelligence Technology 2019)【图像去噪】论文精读:Enhanced CNN for image denoising(ECNDNet)
- (CAAI Transactions on Intelligence Technology 2019)【图像去噪】论文复现:Pytorch实现ECNDNet!入门项目,适合新手小白学习使用,Windows和Linux下均可运行!附训练好的模型文件,可直接得到去噪结果和指标计算!
- (CVPR 2019)【图像去噪】论文精读:Toward Convolutional Blind Denoising of Real Photographs(CBDNet)
- (CVPR 2019)【图像去噪】论文复现:适合新手小白的Pytorch版本CBDNet复现!轻松跑通训练和测试代码!简单修改路径即可训练自己的数据集!代码详细注释!数据处理、模型训练和验证、推理测试全流程讲解!
- (ICCV 2019 Oral)【图像去噪】论文精读:Real Image Denoising with Feature Attention(RIDNet)
- (ICCV 2019 Oral)【图像去噪】论文复现:适合新手小白的Pytorch版本RIDNet复现!轻松跑通训练和测试代码!RIDNet网络结构实现拆解!简单修改路径即可训练自己的数据集!模型训练推理测试全流程讲解!
- (NeurIPS 2016)【图像去噪】论文精读:Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections(REDNet)
- (NeurIPS 2016)【图像去噪】论文复现:Pytorch实现REDNet的三种结构!简单修改路径即可跑通全部代码并训练自己的数据集!支持灰度图和RGB图训练!附训练好的模型文件可直接测试图像得到去噪结果以及评价指标!
- (ICCV 2017)【图像去噪】论文精读:MemNet: A Persistent Memory Network for Image Restoration
- (ICCV 2017)【图像去噪】论文复现:全网最细的Pytorch版本实现MemNet!论文中的网络结构图与代码中的每个变量一一对应!实现思路一目了然!附完整代码和训练好的模型权重文件!
- (CVPR 2018)【图像去噪】论文精读:xUnit: Learning a Spatial Activation Function for Efficient Image Restoration
- (CVPR 2018)【图像去噪】论文复现:代替ReLU!Pytorch实现即插即用激活函数模块xUnit,并插入到DnCNN中实现xDnCNN!
- (CVPR 2018)【图像去噪】论文精读:Multi-level Wavelet-CNN for Image Restoration(MWCNN)
- (CVPR 2018)【图像去噪】论文复现:小波变换替代上下采样!Pytorch实现MWCNN,数据处理、模型训练和验证、推理测试全流程讲解,无论是科研还是应用,新手小白都能看懂,学习阅读毫无压力,去噪入门必看!
- (CVPR 2017)【图像去噪】论文精读:Learning Deep CNN Denoiser Prior for Image Restoration(IRCNN)
- (CVPR 2017)【图像去噪】论文复现:支持任意大小的图像输入!四十多行实现Pytorch极简版本的IRCNN,各种参数和测试集平均PSNR结果与论文一致!
- (NIPS 2018)【图像去噪】论文精读:Non-Local Recurrent Network for Image Restoration(NLRN)
- (ICCV 2019)【图像去噪】论文精读:Self-Guided Network for Fast Image Denoising(SGN)
- (ECCV 2020)【图像去噪】论文精读:Practical Deep Raw Image Denoising on Mobile Devices(PMRID)
- (ECCV 2020)【图像去噪】论文精读:Spatial-Adaptive Network for Single Image Denoising(SADNet)
- (ECCV 2020)【图像去噪】论文复现:三万字长文详解SADNet的Pytorch源码!全网最详细保姆级傻瓜式教程,新手小白也能看懂,代码逐行注释,跑通代码得到去噪结果毫无压力!网络结构图与模型定义的量一一对应!
- (ICLR 2019)【图像去噪】论文精读:Residual Non-local Attention Networks for Image Restoration(RNAN)
- (ICLR 2019)【图像去噪】论文复现:非局部注意力机制提升去噪性能!Pytorch实现RNAN,解决out of memory问题,论文中结构图与代码变量一一对应,清晰明了保证看懂!附训练好的模型文件!
- (CVPR 2020)【图像去噪】论文精读:Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization(AINDNet)
- (NN 2020)【图像去噪】论文精读:Attention-guided CNN for Image Denoising(ADNet)
- (NN 2020)【图像去噪】论文复现:注意力机制助力图像去噪!ADNet的Pytorch源码复现,跑通全流程源码,补充源码中未提供的保存去噪结果图像代码,ADNet网络结构图与源码对应,新手友好,单卡可跑!
- (NeurIPS 2019)【图像去噪】论文精读:Variational Denoising Network: Toward Blind Noise Modeling and Removal(VDNet)
- (NeurIPS 2019)【图像去噪】论文复现:包能看懂!VDNet的Pytorch源码全解析!逐行详细注释,理论与代码结合,提升代码能力!
- (AAAI 2020)【图像去噪】论文精读:End-to-End Unpaired Image Denoising with Conditional Adversarial Networks(UIDNet)
- (TPAMI 2021)【图像去噪】论文精读:Plug-and-Play Image Restoration with Deep Denoiser Prior(DRUNet)
- (TPAMI 2021)【图像去噪】论文复现:无偏置在超大噪声下也能有效去噪!DRUNet的Pytorch源码复现,跑通DRUNet源码,得到去噪结果和评价指标,可作为实验中的对比方法,源码结构梳理,注释清晰,单卡可运行!
- (CVPR 2021)【图像去噪】论文精读:SwinIR: Image Restoration Using Swin Transformer
- (CVPR 2021)【图像去噪】论文复现:Swin Transfomer用于图像恢复!SwinIR的Pytorch源码复现,跑通源码,测试高斯去噪,使用预训练模型得到PSNR/SSIM以及去噪后图像!
- (CVPR 2021)【图像去噪】论文精读:Pseudo 3D Auto-Correlation Network for Real Image Denoising(P3AN)
- (Machine Intelligence Research 2023)【图像去噪】论文精读:Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis(SCUNet)
- (Machine Intelligence Research 2023)【图像去噪】论文复现:Swin Transformer块助力图像去噪!SCUNet的Pytorch源码复现,跑通SCUNet源码,理论结构梳理,获得SCUNet去噪结果,可作为实验中的对比方法!
- (ECCV 2020)【图像去噪】论文精读:Dual Adversarial Network: Toward Real-world Noise Removal and Noise Generation(DANet)
- (ECCV 2020)【图像去噪】论文复现:双对抗网络去除和生成逼真噪声!DANet的Pytorch源码复现,用于去噪和生成逼真噪声,训练、测试、损失函数、整体架构逻辑详解,图文结合,源码注释详细,单卡可跑!
- (CVPR 2021)【图像去噪】论文精读:Invertible Denoising Network: A Light Solution for Real Noise Removal(InvDN)
- (CVPR 2021)【图像去噪】论文复现:小波变换产生高频信息保留的潜在状态!InvDN的Pytorch源码复现,跑通全流程源码,获取去噪结果,理论符号与源码变量一一对应,深入浅出,清晰易懂!
- (ECCV 2020)【图像去噪】论文精读:Learning Enriched Features for Real Image Restoration and Enhancement(MIRNet)
- (ECCV 2020)【图像去噪】论文复现:全网最细!MIRNet的Pytorch源码复现全记录!论文中模型结构图与代码变量一一对应,保证看懂!踩坑报错复盘,一一排雷,Windows下也能轻松运行,代码逐行注释!
- (CVPR 2021)【图像去噪】论文精读:Multi-Stage Progressive Image Restoration(MPRNet)
- (CVPR 2021)【图像去噪】论文复现:三阶段网络!MPRNet的Pytorch源码复现,跑通全流程,图文结合手把手教学,由大到小拆解网络结构,由小到大实现结构组合,结构示意图与代码变量一一对应,全部源码逐行注释!
- (CVPR 2021)【图像去噪】论文精读:NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
- (CVPR 2021)【图像去噪】论文复现:子空间投影提升去噪效果!NBNet的Pytorch源码复现,跑通代码,源码详解,注释详细,图文结合,补充源码中缺少的“保存去噪后的结果图像”代码,指出源码中模型实现的潜在问题
- (Knowledge-Based Systems(KBS) 2022)【图像去噪】论文精读:Layered input GradiNet for image denoising(LIGN)
- (EUSIPCO 2022)【图像去噪】论文精读:SELECTIVE RESIDUAL M-NET FOR REAL IMAGE DENOISING(SRMNet)
- (EUSIPCO 2022)【图像去噪】论文复现:新手友好!SRMNet的Pytorch源码复现,跑通全流程源码,详细步骤,图文说明,注释详细,模型拆解示意图与代码一一对应,包能看懂,Windows和Linux下均可运行!
- (CVPR 2021)【图像去噪】论文精读:Pre-Trained Image Processing Transformer(IPT)
- (CVPR 2021)【图像去噪】论文复现:底层视觉通用预训练Transformer!IPT的Pytorch源码复现, 跑通IPT源码,获得测试集上平均PSNR和去噪结果,可作为实验中的对比方法!
- (ISCAS 2022)【图像去噪】论文精读:SUNet: Swin Transformer UNet for Image Denoising
- (ISCAS 2022)【图像去噪】论文复现:Swin Transformer用于图像去噪!SUNet的Pytorch源码复现,训练,测试高斯噪声图像流程详解,计算PSNR/SSIM,Windows和Linux下单卡可跑!
- (AAAI 2022)【图像去噪】论文精读:Generative Adaptive Convolutions for Real-World Noisy Image Denoising(FADNet)
- (CVPR 2020 Oral)【图像去噪】论文精读:CycleISP: Real Image Restoration via Improved Data Synthesis
- (CVPR 2020 Oral)【图像去噪】论文复现:制作真实噪声图像数据集!CycleISP的Pytorch源码复现,跑通流程,可以用于制作自己的真实噪声图像数据集,由大到小拆解CycleISP网络结构,由小到大实现结构组合!
- (CVPR 2021 Oral)【图像去噪】论文精读:Adaptive Consistency Prior based Deep Network for Image Denoising(DeamNet)
- (CVPR 2021 Oral)【图像去噪】论文复现:扎实理论提升去噪模型的可解释性!DeamNet的Pytorch源码复现,跑通全流程源码,模型结构图与源码对应拆解,补充源码中没有的保存图像代码!
- (TCSVT 2022)【图像去噪】论文精读:Real Image Denoising via Guided Residual Estimation and Noise Correction(GrencNet)
- (TCSVT 2022)【图像去噪】论文复现:加入SimAM注意力迭代校正noise level map!GrencNet的Pytorch源码复现,得到去噪结果图像和PSNR/SSIM,模型结构搭建详解!
- (AAAI 2020)【图像去噪】论文精读:When AWGN-based Denoiser Meets Real Noises(PD-Denoising)
- (AAAI 2020)【图像去噪】论文复现:用Pixel-shuffle构建高斯噪声与真实噪声之间的联系!PD-Denoising源码复现,跑通训练和测试代码,可得到去噪结果和PSNR,理论公式与源码对应,图文结合详解!
- (CVPR 2022 Oral)【图像去噪】论文精读:MAXIM: Multi-Axis MLP for Image Processing
- (NeurlPS 2021)【图像去噪】论文精读:Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware Adversarial Training(PNGAN)
- (NeurlPS 2021)【图像去噪】论文复现:生成逼真噪声图像!通用方法可用于其他模型微调涨点!PNGAN的Pytorch版本源码复现,详解PNGAN网络结构,清晰易懂,从源码理解论文公式!
- (CVPR 2022)【图像去噪】论文精读:Uformer: A General U-Shaped Transformer for Image Restoration
- (CVPR 2022)【图像去噪】论文复现:Modulator助力Transformer块校准特征!预训练模型可以下载啦!Uformer的Pytorch源码复现,图文结合全流程详细复现,源码详细注释,思路清晰明了!
- (CVPR 2021)【图像去噪】论文精读:HINet: Half Instance Normalization Network for Image Restoration
- (CVPR 2021)【图像去噪】论文复现:比赛夺魁!半实例归一化网络HINet的Pytorch源码复现,图文结合手把手复现,轻松跑通,HINet结构拆解与代码实现,结构图与代码变量一一对应,逐行注释!
- (CVPR 2022 Oral)【图像去噪】论文精读:Restormer: Efficient Transformer for High-Resolution Image Restoration
- (CVPR 2022 Oral)【图像去噪】论文复现:CVPR 2022 oral!Restormer的Pytorch源码复现,跑通训练和测试源码,报错改进全记录,由大到小拆解网络结构,由小到大实现模型组合,代码逐行注释!
- (NeurIPS 2023)【图像去噪】论文精读:PromptIR: Prompting for All-in-One Blind Image Restoration
- (NeurIPS 2023)【图像去噪】论文复现:即插即用模块!通过提示块提升Restormer模型性能!PromptIR的Pytorch源码复现,跑通源码,解决各种报错,获得去噪结果和指标,模型实现详解,示意图与源码对应!
- (NeurIPS 2023)【图像去噪】论文精读:A Unified Conditional Framework for Diffusion-based Image Restoration(UCDIR)
- (CVPR 2023)【图像去噪】论文精读:Efficient and Explicit Modelling of Image Hierarchies for Image Restoration(GRL)
- (ICME 2023)【图像去噪】论文精读:DDT: Dual-branch Deformable Transformer for Image Denoising
- (ECCV 2022)【图像去噪】论文精读:Simple Baselines for Image Restoration(NAFNet)
- (ECCV 2022)【图像去噪】论文复现:大道至简!NAFNet的Pytorch源码复现!跑通NAFNet源码,补充PlainNet,由大到小拆解NAFNet网络结构,由小到大实现结构组合,逐行注释!
- (TIP 2024)【图像去噪】论文精读:Single Stage Adaptive Multi-Attention Network for Image Restoration(SSAMAN)
- 【图像去噪】论文精读:KBNet: Kernel Basis Network for Image Restoration
- 【图像去噪】论文复现:补充KBNet训练过程!KBNet的Pytorch源码复现,全流程跑通代码,模型结构详细拆解,逐行注释!
- (TMLR 2024)【图像去噪】论文精读:CascadedGaze: Efficiency in Global Context Extraction for Image Restoration(CGNet)
- (TMLR 2024)【图像去噪】论文复现:全网首发独家!CGNet的Pytorch源码复现,全流程跑通代码,训练40万次迭代,模型结构详细拆解,逐行注释,附训练好的模型文件,免费下载!
- (PR 2024)【图像去噪】论文精读:Dual Residual Attention Network for Image Denoising(DRANet)
- (PR 2024)【图像去噪】论文复现:研究生发SCI范例!DRANet的Pytorch源码复现,高斯去噪和真实噪声去噪全流程详解,模型结构示意图与代码变量一一对应,注释详尽,新手友好,单卡可跑!
- (Multimedia Systems 2024)【图像去噪】论文精读:Dual convolutional neural network with attention for image blind denoising(DCANet)
- (Multimedia Systems 2024)【图像去噪】论文复现:第一个双CNN+双注意力的去噪模型!DCANet的Pytorch源码复现,高斯去噪和真实噪声去噪全流程详解,模型结构示意图与代码变量一一对应,注释详尽,新手友好,单卡可跑!
- (NN 2024)【图像去噪】论文精读:EWT: Efficient Wavelet-Transformer for Single Image Denoising
- (CVPRW 2024)【图像去噪】论文精读:HNN: Hierarchical Noise-Deinterlace Net Towards Image Denoising
- (ECCV 2024)【图像去噪】论文精读:DualDn: Dual-domain Denoising via Differentiable ISP
- 【图像去噪】论文精读:Restore-RWKV: Efficient and Effective Medical Image Restoration with RWKV
- (ICLR 2024)【图像去噪】论文精读:Xformer: Hybrid X-Shaped Transformer for Image Denoising
- (ICLR 2024)【图像去噪】论文复现:ICLR 2024!X型双分支U型Transformer结构!Xformer的Pytorch源码复现,跑通源码,解决报错,图文手把手教程,网络结构示意图与源码对应,注释详细!
- (ECCV 2024)【图像去噪】论文精读:MambaIR: A Simple Baseline for Image Restoration with State-Space Model
- (ECCV 2024)【图像去噪】论文复现:Man!what can I say?MambaIR的Pytorch源码复现,跑通全流程,轻松解决环境配置问题,图文结合按步骤执行傻瓜式教程,由大到小拆解网络,由小到大实现组合!
- (CVPR 2025)【图像去噪】论文精读:MambaIRv2: Attentive State Space Restoration
- (ICLR 2025)【图像去噪】论文精读:AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation
- (CVPR 2025)【图像去噪】论文精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
- (VISAPP 2025)【图像去噪】论文精读:AKDT: Adaptive Kernel Dilation Transformer for Effective Image Denoising
- (VISAPP 2025)【图像去噪】论文复现:新型Transformer块!可学习扩张卷积用于噪声估计引导多头自注意力!AKDT的Pytorch源码复现,跑通源码,获得去噪结果和评价指标,网络结构实现详解,并计算模型复杂度!
- (CVPR 2025)【图像恢复】论文精读:MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration
- (CVPR 2025)【图像去噪】论文复现:Mamba没Out!MaIR的Pytorch源码复现,跑通全流程,轻松解决环境配置问题,图文结合,明确MaIR创新点,与MambaIR对比,示意图与源码对应,清晰易懂,注释详细!
半监督、无监督、自监督、Zero-Shot、扩散模型(本质也是无监督)、其他领域应用到去噪任务
自监督之框架结构类科研推荐路径:自监督算法都跑出结果,跟自己改进的自监督框架对比,选择某些方法作为对比方法。
- (CVPR 2018)【图像去噪】论文精读:Deep Image Prior(DIP)
- (CVPR 2018)【图像去噪】论文复现:扩散模型思想鼻祖!DIP的Pytorch源码复现,执行教程,代码解析,注释详细,只需修改图像路径即可测试自己的噪声图像!
- (ICML 2018)【图像去噪】论文精读:Noise2Noise: Learning Image Restoration without Clean Data(N2N)
- (ICML 2018)【图像去噪】论文复现:倒反天罡!老思想新创意,无需Ground-truth!Pytorch实现无监督图像去噪开山之作Noise2Noise!附训练好的模型文件!
- (CVPR 2019)【图像去噪】论文精读:Noise2Void-Learning Denoising from Single Noisy Images(N2V)
- (CVPR 2029)【图像去噪】论文复现:降维打击!图像对输入变成像素对输入!Pytorch实现Noise2Void(N2V),基于U-Net模型训练,简洁明了理解N2V核心思想!附训练好的灰度图和RGB图的模型文件!
- (NeurIPS 2019)【图像去噪】论文精读:High-Quality Self-Supervised Deep Image Denoising(HQ-SSL)
- (PMLR 2019)【图像去噪】论文精读:Noise2Self: Blind Denoising by Self-Supervision(N2S)
- (PMLR 2019)【图像去噪】论文复现:自监督盲去噪!Noise2Self(N2S)的Pytorch源码复现,跑通源码,测试单图像去噪,解决了代码中老版本存在的问题,mask核心代码解析,注释清晰易懂!
- (CVPR 2020)【图像去噪】论文精读:Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image(S2S)
- (CVPR 2020)【图像去噪】论文复现:单噪声图像输入的自监督图像去噪!Self2Self(S2S) 的Pytorch版本源码复现,跑通代码,原理详解,代码实现、网络结构、论文公式相互对应,注释清晰,附修改后的完整代码!
- (CVPR 2020)【图像去噪】论文精读:Noisier2Noise: Learning to Denoise from Unpaired Noisy Data
- (NeurIPS 2020)【图像去噪】论文精读:Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising
- (TIP 2020)【图像去噪】论文精读:Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image(NAC)
- (CVPR 2021 Oral)【图像去噪】论文精读:FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise
- (CVPR 2021 Oral)【图像去噪】论文复现:FBI open the door!又快又好,飞速盲自监督去噪!FBI-Denoiser的Pytorch源码复现,跑通源码,补充保存图像代码,二阶段框架详解,理论与源码对应!
- (CVPR 2021)【图像去噪】论文精读:Recorrupted-to-Recorrupted: Unsupervised Deep Learning for Image Denoising(R2R)
- (CVPR 2021)【图像去噪】论文复现:一步破坏操作提升自监督去噪性能!R2R的Pytorch源码复现,跑通源码,获得评估指标和去噪结果,核心原理与代码详解,双系统单卡可跑,附训练好的模型文件!
- (CVPR 2021)【图像去噪】论文精读:Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
- (CVPR 2021)【图像去噪】论文复现:相邻像素子图采样助力自监督去噪学习!Neighbor2Neighbor的Pytorch源码复现,跑通及补充测试代码,获得去噪结果和PSNR/SSIM,与论文中基本一致,单卡可跑!
- (ICCV 2021)【图像去噪】论文精读:C2N: Practical Generative Noise Modeling for Real-World Denoising
- (ICCV 2021)【图像去噪】论文复现:无任何假设无监督模拟真实世界噪声!C2N的Pytorch源码复现,跑通测试源码,可以用于测试自己的数据集或单张图像,示意图与源码对应,注释详细,双系统均可运行!
- (ICCV 2021)【图像去噪】论文精读:Rethinking Deep Image Prior for Denoising(DIP-SURE)
- (ICCV 2021)【图像去噪】论文复现:重新思考DIP!解决DIP不知道何时停止迭代的问题!DIP-SURE的Pytorch源码复现,跑通推理测试代码,图文结合,详细解释,核心损失与代码实现对应!
- (ICLR 2021)【图像去噪】论文精读:An Unsupervised Deep Learning Approach for Real-World Image Denoising(NN+denoiser)
- (ICLR 2021)【图像去噪】论文复现:传统方法与深度学习方法结合的无监督去噪算法!单图像无监督去噪算法NN+denoiser的Pytorch源码复现,跑通源码,得到去噪结果和PSNR/SSIM,单卡可跑!
- (NeurIPS 2021)【图像去噪】论文精读:Noise2Score: Tweedie‘s Approach to Self-Supervised Image Denoising without Clean Images
- (CVPR 2022)【图像去噪】论文精读:Noise Distribution Adaptive Self-Supervised Image Denoising using Tweedie Distribution and Score Matching
- (ICLR 2021)【图像去噪】论文精读:GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
- (CVPR 2022)【图像去噪】论文精读:Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots(B2U)
- (CVPR 2022)【图像去噪】论文复现:将盲问题转成非盲问题!解决盲点网络会出现恒等映射的痛点!Blind2Unblind的Pytorch源码复现,跑通源码,获取结果,理论与源码一一对应,清晰易懂!
- (Nature Machine Intelligence 2022)【图像去噪】论文精读:Noise2Fast: Fast Self-Supervised Single Image Blind Denoising(N2F)
- (Nature Machine Intelligence 2022)【图像去噪】论文复现:奇偶棋盘格下采样充分破坏真实噪声的空间相关性!零样本单噪声图像自监督去噪算法N2F的Pytorch源码复现,跑通源码,解决报错,框架解析!
- (ECCV 2020)【图像去噪】论文精读:Unpaired Learning of Deep Image Denoising(DBSN)
- (ECCV 2020)【图像去噪】论文复现:膨胀卷积助力盲点网络自监督训练!DBSN的Pytorch源码复现,跑通源码,补充源码中未提供的保存去噪结果图像代码,获得PSNR/SSIM,原理公式示意图与代码对应!
- (CVPR 2022)【图像去噪】论文精读:CVF-SID: Cyclic multi-Variate Function forSelf-Supervised Image Denoising by Disentangling Noise from Image
- (CVPR 2022)【图像去噪】论文复现:循环分解噪声图像并增强!CVF-SID的Pytorch源码复现,跑通源码,解决报错,获取图像结果以及评估指标,框架示意图和损失函数公式与源码变量一一对应,注释详细!
- (CVPR 2022)【图像去噪】论文精读:AP-BSN: Self-Supervised Denoising for Real-World Images via Asymmetric PD and Blind-Spot
- (CVPR 2022)【图像去噪】论文复现:非对称PD和R3后处理助力自监督盲点网络去噪!AP-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
- (CVPR 2022)【图像去噪】论文精读:IDR: Self-Supervised Image Denoising via Iterative Data Refinement
- (TPAMI 2022)【图像去噪】论文精读:Learn from Unpaired Data for Image Restoration: A Variational Bayes Approach(LUD-VAE)
- (TPAMI 2022)【图像去噪】论文复现:从未配对的clean-noisy中生成合成数据,模拟真实噪声!LUD-VAE的Pytorch源码复现,跑通源码,添加SIDD测试代码,框架结构和损失函数详解!
- (IJCAI 2022)【图像去噪】论文精读:Towards Adversarially Robust Deep Image Denoising(OBSATK/HAT)
- (WACVW 2022)【图像去噪】论文精读:IDEA-Net: Adaptive Dual Self-Attention Network for Single Image Denoising
- (ICCV 2023)【图像去噪】论文精读:Random Sub-Samples Generation for Self-Supervised Real Image Denoising(SDAP)
- (ICCV 2023)【图像去噪】论文复现:加入RSG扰动提升盲点网络BSN的性能!SDAP的Pytorch源码复现,跑通SDAP全流程源码,得到去噪结果图像和评估指标PSNR/SSIM,原理详解,注释详细,思路清晰!
- (ICCV 2023)【图像去噪】论文精读:Score Priors Guided Deep Variational Inference for Unsupervised Real-World Single Image Denoising(ScoreDVI)
- (ICCV 2023)【图像去噪】论文精读:The Devil is in the Upsampling: Architectural Decisions Made Simpler for Denoising with Deep Image Prior(FasterDIP)
- (ICCV 2023)【图像去噪】论文复现:问题出在上采样上!改变架构解决DIP产生的光谱偏差,FasterDIP的Pytorch源码复现,跑通推理测试代码,图文结合,核心架构与代码对应!
- (ICCV 2023)【图像去噪】论文精读:Iterative Denoiser and Noise Estimator for Self-Supervised Image Denoising(DCD-Net)
- (ICCV 2023)【图像去噪】论文精读:Self-supervised Image Denoising with Downsampled Invariance Loss and Conditional Blind-Spot Network(CBSN)
- (CVPR 2023)【图像去噪】论文精读:Zero-Shot Noise2Noise: Efficient Image Denoising without any Data(ZS-N2N)
- (CVPR 2023)【图像去噪】论文复现:大道至简!ZS-N2N的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与论文理论对应!
- (CVPR 2023)【图像去噪】论文精读:Spatially Adaptive Self-Supervised Learning for Real-World Image Denoising(BNN-LAN)
- (CVPR 2023)【图像去噪】论文复现:分区域提升盲点网络性能!BNN-LAN的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与理论公式一一对应!
- (CVPR 2023)【图像去噪】论文精读:LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World Denoising
- (CVPR 2023)【图像去噪】论文复现:双分支局部和全局特征提取自监督去噪盲点网络!LG-BPN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
- (CVPRW 2023)【图像去噪】论文精读:MM-BSN: Self-Supervised Image Denoising for Real-World with Multi-Mask based on Blind-Spot Network
- (CVPRW 2023)【图像去噪】论文复现:多形状掩码方案助力盲点网络提升性能!MM-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
- (IJCAI 2023)【图像去噪】论文精读:SS-BSN: Attentive Blind-Spot Network for Self-Supervised Denoising with Nonlocal Self-Similarity
- (IJCAI 2023)【图像去噪】论文复现:自相似注意力提升盲点网络性能!SS-BSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
- (CVPR 2023)【图像去噪】论文精读:Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
- (NeurIPS 2023)【图像去噪】论文精读:PUCA: Patch-Unshuffle and Channel Attention for Enhanced Self-Supervised Image Denoising
- (NeurIPS 2023)【图像去噪】论文复现:Pixel-Unshuffle秒变Patch-Unshuffle!PUCA的Pytorch源码复现,跑通源码,获得去噪结果和评价指标,结构图与源码实现相对应,轻松理解,注释详细!
- (ICCV 2023)【图像去噪】论文精读:Unsupervised Image Denoising in Real-World Scenarios via Self-Collaboration Parallel Generative Adversarial Branches(SCPGabNet)
- (ICCV 2023)【图像去噪】论文复现:迭代替换去噪器合成更优的噪声分布!SC策略助力非配对无监督GAN去噪!SCPGabNet的Pytorch源码复现,跑通源码,添加保存图像代码,框架结构和损失函数详解!
- (TCSVT 2023)【图像去噪】论文精读:Toward Interactive Self-Supervised Denoising
- (ICML 2024)【图像去噪】论文精读:Residual-Conditioned Optimal Transport: Towards Structure-Preserving Unpaired and Paired Image Restoration(RCOT)
- (ECCV 2024)【图像去噪】论文精读:Asymmetric Mask Scheme for Self-Supervised Real Image Denoising(AMSNet)
- (ECCV 2024)【图像去噪】论文复现:灵感源自MAE!进一步解决BSN的局限性,破坏真实噪声的空间相关性!AMSNet的Pytorch源码复现,跑通源码,原理详解!
- (TPAMI 2024)【图像去噪】论文精读:Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling(DMID)
- (TPAMI 2024)【图像去噪】论文复现:扩散模型用于图像去噪!DMID的Pytorch源码复现,跑通测试流程,结构梳理和拆解,理论公式与源码对应,注释详细, Window和Linux下单卡均可运行!
- (CVPR 2024)【图像去噪】论文精读:LAN: Learning to Adapt Noise for Image Denoising
- (CVPR 2024)【图像去噪】论文复现:改变输入噪声分布去适应冻结的预训练网络以实现匹配!LAN源码复现,跑通源码,补充保存去噪结果图像代码,获得评估指标,原理详解!
- (CVPR 2024)【图像去噪】论文精读:Masked and Shuffled Blind Spot Denoising for Real-World Images(MASH)
- (CVPR 2024)【图像去噪】论文复现:基于盲点网络的单图像去噪新方法!MASH的Pytorch源码复现,跑通源码,补充保存去噪结果图像代码,计算数据集的平均PSNR/SSIM,公式与代码变量对应,详细解析!
- (CVPR 2024)【图像去噪】论文精读:Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios(AT-BSN)
- (CVPR 2024)【图像去噪】论文复现:非对称可调盲点+蒸馏提升BSN网络性能!AT-BSN的Pytorch源码复现,跑通全流程源码,得到去噪结果图像和PSNR/SSIM,结构示意图与源码实现对应,注释详细,思路清晰!
- (NeurIPS 2024)【图像去噪】论文精读:Diffusion Priors for Variational Likelihood Estimation and Image Denoising(DiffusionVI)
- (NeurIPS 2024)【图像去噪】论文复现:反向扩散中加入MAP将扩散模型从高斯去噪推广到真实去噪!DiffusionVI的Pytorch源码复现,跑通源码,梳理理论,单卡可执行!
- (NeurIPS 2024)【图像去噪】论文精读:Masked Pre-training Enables Universal Zero-shot Denoiser(MPI)
- (NeurIPS 2024)【图像去噪】论文复现:掩码后的自然图像预训练模型用于单噪声图像推理!Zero-shot算法MPI的Pytorch源码复现,跑通源码,图文保姆级教程,框架结构与代码对应,注释详细!
- (CVPR 2024)【图像去噪】论文精读:SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder
- (IET Image Processing 2024)【图像去噪】论文精读:Noise2Variance: Dual networks with variance constraint for self-supervised real-world image denoising
- (AAAI 2025)【图像去噪】论文精读:Rethinking Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising(TBSN)
- (AAAI 2025)【图像去噪】论文复现:Transfomer块增大自监督去噪盲点网络感受野!TBSN的Pytorch源码复现,跑通全流程,获取指标计算结果,补充保存图像代码,模型结构示意图与源码实现一一对应,思路清晰!
- (AAAI 2025)【图像去噪】论文精读:Prompt-SID: Learning Structural Representation Prompt via Latent Diffusion for Single-Image Denoising
- (ICLR 2025)【图像去噪】论文精读:Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration(Noise-DA)
- (CVPR 2025)【图像去噪】论文精读:Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
- (TPAMI 2025)【图像去噪】论文精读:Pixel2Pixel: A Pixelwise Approach for Zero-shot Single Image Denoising
- (TPAMI 2025)【图像去噪】论文复现:此Pixel2Pixel非彼Pix2Pix,提升泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
- (WACV 2025 Oral)【图像去噪】论文精读:Design Principles of Multi-Scale J-invariant Networks for Self-Supervised Image Denoising(UBSN)
- (WACV 2025 Oral)【图像去噪】论文复现:打破强制J不变性限制,提出U形结构的盲点网络!自监督盲点网络UBSN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!
- (ArXiv 2025)【图像去噪】论文精读:A Simple Combination of Diffusion Models for Better Quality Trade-Offs in Image Denoising
- (ArXiv 2025)【图像去噪】论文精读:Fractal-IR: A Unified Framework for Efficient and Scalable Image Restoration
- (ArXiv 2025)【图像去噪】论文精读:Diffusion Image Prior(DIIP)
- (ArXiv 2025)【图像去噪】论文精读:Unsupervised Real-World Denoising: Sparsity is All You Need(MID)
- (WACV 2025)【图像去噪】论文精读:SwinIA: Self-Supervised Blind-Spot Image Denoising with Zero Convolutions
OOD泛化
- (CVPR 2023)【图像去噪】论文精读:Masked Image Training for Generalizable Deep Image Denoising(MaskedDenoising)
- (CVPR 2024)【图像去噪】论文精读:Robust Image Denoising through Adversarial Frequency Mixup(AFM)
- (CVPR 2024)【图像去噪】论文复现:提高真实噪声去噪模型的泛化性!AFM的Pytorch源码复现,跑通AFM源码全流程,图文结合,网络结构拆解,模块对应源码注释,源码与论文公式对应!
- (arXiv 2024)【图像去噪】论文精读:Learning to Translate Noise for Robust Image Denoising
- (arXiv 2024)【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
- (CVPR 2024)【图像去噪】论文精读:Transfer CLIP for Generalizable Image Denoising(CLIPDenoising)
- (CVPR 2024)【图像去噪】论文复现:CLIP用于图像去噪提升泛化性!CLIPDenoising的Pytorch源码复现,跑通CLIPDenoising全流程,图文结合,网络结构梳理和拆解,对应源码注释!
- (ECCV 2024)【图像去噪】论文精读:TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts
和其他领域结合
去噪模型通常用于医学图像(主要包含MRI、PET Image、CT Image、Pathological Image)、荧光显微图像(fluorescence microscopy images, FMI)高光谱图像(Hyperspectral Image, HSI)、遥感图像/无人机(Remote Sensing Image, RSI/UAV)、电镜图像(EM、TEM、SEM image)、红外图像(infrared image, RGB-NIR近红外)、低光图像(Low-light image)、水下声纳(Underwater Sonar Image)、雷达图像(Synthetic Aperture Radar, SAR)等。其中,红外图像去噪偏【图像融合】领域,低光图像去噪偏【图像增强】领域。
可以按关键词寻找对应的文章,需要复现的论文可以评论区留言,我添加到专栏中。
上述通用的去噪算法基本都适用于其他领域的图像,大家灵活变通,从特定场景的图像特征入手。
- (高光谱图像、遥感图像)【图像去噪】论文精读:Attention-Based Octave Network for Hyperspectral Image Denoising(AODN)
- (遥感图像,TGRS 2023)【图像去噪】论文精读:Dynamic Adaptive Attention-Guided Self-Supervised Single Remote-Sensing Image Denoising
- (高光谱图像,CVPR 2024)【图像去噪】论文精读:Unmixing Diffusion for Self-Supervised Hyperspectral Image Denoising
- (SEM图像)【图像去噪】论文精读:Denoising of scanning electron microscope images for biological ultrastructure enhancemen
- (医学图像,MICCAI 2021)【图像去噪】论文精读:Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging(D2S)
- (医学图像,MICCAI 2021)【图像去噪】论文复现:天秀空间变换!匹配同一场景不同时间帧图像内容,可以多图像输入!端到端动态成像自监督去噪框架D2S的Pytorch源码复现,跑通源码,图文展示,框架拆解,注释详细!
- (医学图像,MICCAI 2022)【图像去噪】论文精读:Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image
- (医学图像,MICCAI 2024)【图像去噪】论文精读:WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising
- (荧光显微镜图像,MICCAI 2022)【图像去噪】论文精读:Noise2SR: Learning to Denoise from Super-Resolved Single Noisy Fluorescence Image(N2SR)
- (荧光显微镜图像,MICCAI 2022)【图像去噪】论文复现:超分思想助力荧光显微图像自监督去噪!N2SR的Pytorch源码复现,图文详细教程跑通源码,框架结构原理示意图与代码对应,注释详细,补充三个实用功能代码!
- (荧光显微镜图像,Nature Computational Science 2023)【图像去噪】论文精读:Spatial redundancy transformer for selfsupervised fluorescence image denoising(SRDTrans)
- (电镜图像,TCL 2024)【图像去噪】论文精读:Zero-Shot Image Denoising for High-Resolution Electron Microscopy
- (医学图像,MICCAI 2024)【图像去噪】论文精读:Region Attention Transformer for Medical Image Restoration(RAT)
- (医学图像)【图像去噪】论文精读:CTformer: Convolution-free Token2Token Dilated Vision Transformer for Low-dose CT Denoising
- (医学图像,arXiv 2025)【图像去噪】论文精读:CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising
- (荧光显微镜图像,arXiv 2024)【图像去噪】论文精读:FM2S: Self-Supervised Fluorescence Microscopy Denoising With Single Noisy Image
- (荧光显微镜图像,arXiv 2024)【图像去噪】论文复现:速度飞快,大道至简,额外的泊松-高斯噪声助力性能提升!专门为FMI涉及的自监督单图像去噪方法,FM2S的Pytorch源码复现,跑通源码,框架解析,补充相关实用代码!
- (RGB-NIR,AAAI 2022)【图像去噪】论文精读:DarkVisionNet: Low-Light Imaging via RGB-NIR Fusion with Deep Inconsistency Prior(DVN)
- (RGB-NIR,CVPR 2023 )【图像去噪】论文精读:Structure Aggregation for Cross-Spectral Stereo Image Guided Denoising(SANet)
- (RGB-NIR,TMM 2024,新数据集 )【图像去噪】论文精读:NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Data
- (RGB-NIR,CVPR 2025 )【图像去噪】论文精读:Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
- (医学图像,arXiv 2025)【图像去噪】论文精读:DiffDenoise: Self-Supervised Medical Image Denoising with Conditional Diffusion Models
- (医学图像,TIM 2025)【图像去噪】论文精读:SDCNN: Self-Supervised Disentangled Convolutional Neural Network for Low-Dose CT Denoising
- (医学图像,arXiv 2025)【图像去噪】论文精读:Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
论文相关
- 【高效科研】超分辨率重建/图像去噪等CV论文实验部分的视觉比较(Visual comparison)—— 制作局部放大图!全代码自动化实现!鼠标框选区域!只需修改图像路径!无需使用PPT或PS!四种方法让你得心应手!
- 【高效科研】使用PPT绘制超分辨率重建/图像去噪等CV论文中的网络结构示意图!附多个自绘的主流网络模型模板!各个模块随取随用!
- 【高效科研】超分/去噪等领域通用论文写作提纲,包括每个部分详细撰写、图表制作、参考文献BibTeX格式、latex使用等,附参考写作流程,写作心得!
研究方向
- 有监督:
- 高斯去噪AWGN和真实世界噪声去噪,将新模块、各种即插即用模型应用到框架中,提升模型性能,追求SOTA;
- 不追求模型改进,而是某一种通用方法可以提升模型性能,适用于通用模型;
- 非监督:
- 盲点网络BSN路线,进一步改进盲点网络,提升性能,追求SOTA;
- 自监督模型框架路线,想办法破坏真实噪声的空间相关性,构建损失;
- 理论建模(贝叶斯变分推理、diffusion等),问题转化,使其适用于去噪任务;
- 其他:
- OOD泛化;
- 模拟真实世界噪声,生成逼真噪声;
建议:明确自己任务目的,发论文明确目标区位,做项目明确首要任务,以此来学习最相关的文章。
前沿资讯
资料汇总(持续更新中。。。)
数据集:
- BSD:https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
- CBSD68:https://github.com/clausmichele/CBSD68-dataset
- Nam:http://snam.ml/research/ccnoise(已失效,可以从https://github.com/csjunxu/MCWNNM-ICCV2017中找到)
- Waterloo Exploration Database(WED): https://kedema.org/project/exploration/index.html
- 汇总:https://blog.csdn.net/iteapoy/article/details/86062640
- DND:https://noise.visinf.tu-darmstadt.de/
- McMaster:https://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
- SIDD:https://abdokamel.github.io/sidd/
- PolyU:https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset
- DIV2K:https://data.vision.ee.ethz.ch/cvl/DIV2K/
- RENOIR:https://ani.stat.fsu.edu/~abarbu/Renoir.html
- NIND:https://commons.wikimedia.org/wiki/Natural_Image_Noise_Dataset
- ImageNet验证集:https://image-net.org/challenges/LSVRC/2012/2012-downloads.php
- AAPM数据集(CT图像):https://www.aapm.org/GrandChallenge/LowDoseCT/
- LDCT:https://www.cancerimagingarchive.net/collection/ldct-and-projection-data/
- CC15、HighISO、IOCI:https://drive.google.com/drive/folders/17AUCJnENPGtHmQKw-gKcVbNCuj-lcyge
- SenseNoise500(来自论文IDR):https://github.com/zhangyi-3/IDR?tab=readme-ov-file
- MIT-Adobe FiveK Dataset(5000张):
- 荧光显微镜图像数据集:
-
Fluorescence Microscopy Denoising (FMD) :
-
Widefield2SIM (W2S) :
- Transmission electron microscopy (TEM)数据集:https://github.com/sreyas-mohan/electron-microscopy-denoising
- Real STEM Data:https://america.iza-structure.org/IZA-SC/ftc_table.php
- 遥感图像数据集:
- UC-Merced Dataset:http://weegee.vision.ucmerced.edu/datasets/landuse.html
- OPTIMAL-31:有kaggle账号请在官方链接下载,没有kaggle账号可以在飞浆下载 https://aistudio.baidu.com/datasetdetail/51798
- 真实遥感图像 Pavia Dataset(ROSIS):https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
注:数据集耐心点搜都能找到,优先官方下载,有的官方失效了在Github上找(可能在某个论文的源码中)。
综述:
2023年:A Comparison of Image Denoising Methods
2020年:Deep Learning on Image Denoising: An overview
问题汇总(持续更新中。。。)
- 没有图像处理基础、深度学习基础、代码能力弱、英语也不太好能看懂专栏内文章吗?
答:可以,但初期会比较吃力,先复现几篇简单的文章,全力搞懂代码,多学多积累很快就能上手。 - xxx型号的GPU xxG显存够用吗?
答:根据你的实际情况配置GPU,实验室什么条件就用什么,实验室提供不了选择租卡比较划算,因为可以根据模型大小、数据集大小、源码参数设置等灵活选择卡数。不建议个人配置Windows显卡,因为大多数论文的实验环境都是Linux,而且单卡在模型复杂度较大时显存会不够用。
与我联系
图像去噪交流群(QQ):1037809432
VX:shixiaodayyds(可加微信交流群/专栏咨询,请注明来意,已订阅的备注CSDN昵称)
公众号
关注下方👇公众号【十小大的底层视觉工坊】,公众号将更新精炼版论文,帮助你用碎片化时间快速掌握论文核心内容。