开源项目Splatt3R安装与配置指南

开源项目Splatt3R安装与配置指南

splatt3r Official repository for Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs splatt3r 项目地址: https://gitcode.com/gh_mirrors/sp/splatt3r

1. 项目基础介绍

Splatt3R是一个开源项目,它实现了从未经校准的图像对中直接预测三维高斯分布的前馈模型。这项技术可以用于从图像中恢复场景的3D结构。该项目的主要编程语言是Python。

2. 项目使用的关键技术和框架

  • 高斯分布预测:模型能够预测3D空间中的高斯分布,用于表示场景中的结构。
  • 深度学习框架:使用PyTorch作为深度学习框架,它提供了灵活且强大的工具来构建和训练模型。
  • 图像处理:可能涉及到OpenCV等图像处理库来处理输入图像。
  • MASt3R预训练模型:项目使用MASt3R的预训练模型作为基础,进一步训练 Splatt3R 模型。

3. 安装和配置准备工作

在开始安装之前,请确保您的系统中已经安装了以下依赖项:

  • Python (推荐版本3.8及以上)
  • pip (Python包管理器)
  • CUDA (若需要使用GPU加速)
  • conda (推荐使用Anaconda环境管理器)

详细安装步骤

  1. 克隆项目仓库

    在命令行中执行以下命令以克隆项目仓库:

    git clone https://github.com/btsmart/splatt3r.git
    cd splatt3r
    
  2. 设置Anaconda环境

    使用conda创建一个虚拟环境,并安装所需的Python包:

    conda env create -f environment.yml
    

    创建环境后,激活环境:

    conda activate splatt3r_env
    
  3. 安装额外依赖

    项目可能需要一些额外的依赖,如diff-gaussian-rasterization-modified,使用pip安装:

    pip install git+https://github.com/dcharatan/diff-gaussian-rasterization-modified
    
  4. 编译CUDA内核(可选)

    如果需要使用GPU加速,可能需要编译CUDA内核。导航到相应目录并执行编译命令:

    cd src/mast3r_src/dust3r/croco/models/curope/
    python setup.py build_ext --inplace
    cd../../../../..
    
  5. 获取预训练模型

    下载MASt3R预训练模型并将其放置在指定的文件路径:

    # 假设已经下载了预训练模型并放置在项目目录下的checkpoints目录中
    
  6. 运行示例

    在项目目录中,运行demo.py文件来测试安装是否成功:

    python demo.py
    

如果安装和配置过程中遇到任何问题,请查阅项目的README文件或相关文档以获取更多帮助。

splatt3r Official repository for Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs splatt3r 项目地址: https://gitcode.com/gh_mirrors/sp/splatt3r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗蒙霁Ella

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值