Orama 开源项目教程
orama 项目地址: https://gitcode.com/gh_mirrors/ora/orama
1. 项目介绍
Orama 是一个快速、无依赖的 JavaScript 全文和向量搜索引擎,具有拼写错误容忍、过滤、分面、词干提取等功能。它可以在任何 JavaScript 运行时环境中工作,包括浏览器、服务器和服务。Orama 的核心优势在于其轻量级(小于 2KB)和灵活性,适用于各种搜索场景。
2. 项目快速启动
安装 Orama
你可以使用 npm、yarn、pnpm 或 bun 来安装 Orama:
npm install @orama/orama
或者直接在浏览器中使用模块:
<html>
<body>
<script type="module">
import { create, search, insert } from 'https://unpkg.com/@orama/orama@latest/dist/index.js';
// 你的代码
</script>
</body>
</html>
创建数据库实例
首先,创建一个新的数据库实例并设置索引模式:
import { create, insert, search } from '@orama/orama';
const db = await create({
schema: {
name: 'string',
description: 'string',
price: 'number',
embedding: 'vector[1536]', // 向量大小必须在模式初始化时指定
meta: {
rating: 'number',
},
},
});
插入数据
向数据库中插入一些文档:
await insert(db, {
name: 'Wireless Headphones',
description: 'Experience immersive sound quality with these noise-cancelling wireless headphones',
price: 99.99,
embedding: [/* 向量数据 */],
meta: {
rating: 4.5,
},
});
查询数据
使用全文搜索查询数据库:
const searchResult = await search(db, {
term: 'headphones',
});
console.log(searchResult);
3. 应用案例和最佳实践
应用案例
- 电子商务搜索:Orama 可以用于电子商务网站的商品搜索,支持全文搜索、向量搜索和混合搜索,帮助用户快速找到所需商品。
- 文档管理系统:在文档管理系统中,Orama 可以用于全文搜索文档内容,支持拼写错误容忍和词干提取,提高搜索准确性。
- 智能助手:Orama 可以集成到智能助手中,提供快速、准确的搜索结果,支持向量搜索和混合搜索,提升用户体验。
最佳实践
- 优化索引模式:根据实际需求优化索引模式,避免不必要的字段索引,提高搜索性能。
- 使用向量搜索:对于需要高精度搜索的场景,使用向量搜索可以显著提高搜索结果的准确性。
- 结合过滤器:在搜索时结合过滤器,可以进一步缩小搜索范围,提高搜索效率。
4. 典型生态项目
- Orama Secure AI Proxy:Orama 提供了一个安全的 AI 代理插件,可以自动处理向量搜索的配置,简化开发流程。
- Orama 社区:Orama 拥有一个活跃的社区,提供了丰富的文档、教程和示例代码,帮助开发者快速上手。
- Orama 插件系统:Orama 的插件系统允许开发者扩展其功能,支持自定义搜索逻辑和数据处理。
通过以上内容,你可以快速了解并上手 Orama 开源项目,并在实际应用中发挥其强大的搜索能力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考