Contriever 项目使用教程

Contriever 项目使用教程

contriever Contriever: Unsupervised Dense Information Retrieval with Contrastive Learning contriever 项目地址: https://gitcode.com/gh_mirrors/co/contriever

1. 项目介绍

Contriever 是一个由 Facebook Research 开发的无监督密集信息检索项目,基于对比学习框架进行预训练。该项目的主要目标是提供一种无需监督数据即可进行信息检索的模型,其性能与传统的 BM25 方法相当,甚至在某些情况下表现更优。Contriever 不仅支持单语言检索,还支持多语言和跨语言检索,适用于多种自然语言处理任务。

2. 项目快速启动

2.1 安装依赖

首先,确保你已经安装了 Python 和必要的依赖库。你可以使用以下命令安装所需的 Python 包:

pip install transformers

2.2 加载预训练模型

Contriever 提供了多种预训练模型,你可以通过 HuggingFace 的 transformers 库加载这些模型。以下是一个简单的示例代码,展示如何加载 Contriever 模型并生成句子嵌入:

from src.contriever import Contriever
from transformers import AutoTokenizer

# 加载 Contriever 模型
contriever = Contriever.from_pretrained("facebook/contriever")

# 加载对应的 tokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/contriever")

# 示例句子
sentences = [
    "Where was Marie Curie born?",
    "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.",
    "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace."
]

# 对句子进行编码
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")

# 生成嵌入
embeddings = contriever(**inputs)

# 计算句子之间的相似度
score01 = embeddings[0] @ embeddings[1]  # 1.0473
score02 = embeddings[0] @ embeddings[2]  # 1.0095

print(f"Sentence 1 vs Sentence 2: {score01}")
print(f"Sentence 1 vs Sentence 3: {score02}")

3. 应用案例和最佳实践

3.1 问答系统

Contriever 可以用于构建高效的问答系统。通过预训练的 Contriever 模型,你可以快速检索与问题相关的文档或段落,从而提高问答系统的准确性和响应速度。

3.2 多语言检索

Contriever 支持多语言检索,特别适用于需要处理多种语言的场景。例如,在跨语言信息检索任务中,Contriever 可以有效地检索与非英语查询相关的英语文档。

3.3 文档检索

在文档检索任务中,Contriever 可以用于从大规模文档库中检索与查询最相关的文档。通过对比学习框架,Contriever 能够在无监督的情况下学习到有效的文档表示。

4. 典型生态项目

4.1 HuggingFace Transformers

Contriever 是基于 HuggingFace 的 transformers 库开发的,因此与 HuggingFace 生态系统紧密集成。你可以利用 HuggingFace 提供的丰富工具和模型,进一步扩展 Contriever 的功能。

4.2 DPR (Dense Passage Retrieval)

DPR 是另一个由 Facebook Research 开发的信息检索项目,与 Contriever 类似,DPR 也使用密集嵌入进行检索。两者可以结合使用,以提高检索性能。

4.3 BEIR (Benchmarking Information Retrieval)

BEIR 是一个用于评估信息检索模型的基准测试平台。Contriever 在 BEIR 基准测试中表现优异,你可以使用 BEIR 来评估和比较不同检索模型的性能。

通过以上模块的介绍,你应该能够快速上手并应用 Contriever 项目。希望这篇教程对你有所帮助!

contriever Contriever: Unsupervised Dense Information Retrieval with Contrastive Learning contriever 项目地址: https://gitcode.com/gh_mirrors/co/contriever

《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舒京涌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值