无监督re-ranker,Improving Passage Retrieval with Zero-Shot Question Generation

论文介绍了UPR(无监督段落重排名)模型,该模型通过预训练语言模型进行零样本问题生成,对检索到的段落进行重新排序,提升了开放领域QA中段落检索的准确性。无需特定任务训练,适用于多种检索器和预训练模型,且在多个数据集上表现出色。
摘要由CSDN通过智能技术生成

论文:Improving Passage Retrieval with Zero-Shot Question Generation

作者:Devendra Singh Sachan1,2∗, Mike Lewis3, Mandar Joshi4, Armen Aghajanyan3, Wen-tau Yih3, Joelle Pineau1,2,3, Luke Zettlemoyer3,4 1McGill University; 2Mila - Quebec AI Institute 3Meta AI; 4University of Washington

源码:GitHub - DevSinghSachan/unsupervised-passage-reranking: Code and datasets for the paper "Improving Passage Retrieval with Zero-Shot Question Generation"

任务:re-ranking模型,改善open QA中的passage retrieval阶段

方法:使用预训练模型GPT,T5使用zero-shot手段,在候选段落后添加prompt: “Passage: { pi }. Please write a question based on this passage”,从而基于段落生成问题,并以真正的问题作为模型输入,计算基于段落生成问题token的平均概率。以此概率作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>