NED项目使用教程

NED项目使用教程

NED PyTorch implementation for NED (CVPR 2022). It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles. NED 项目地址: https://gitcode.com/gh_mirrors/ne/NED

1. 项目介绍

NED(Neural Emotion Director)是一个基于PyTorch的开源项目,旨在通过深度学习技术实现视频中演员面部表情的情感控制。该项目在CVPR 2022中获得了最佳论文提名,并提供了一种新颖的方法来操纵视频中演员的面部表情,同时保留原始的口部运动(即语音)。NED的核心技术包括一个参数化的3D面部表示模型和一个深度域翻译框架,能够实现面部表情的动态一致性和真实感。

2. 项目快速启动

2.1 克隆项目

首先,克隆NED项目的代码库到本地:

git clone https://github.com/foivospar/NED.git
cd NED

2.2 创建并激活虚拟环境

使用提供的environment.yml文件创建并激活conda环境:

conda env create -f environment.yml
conda activate NED

2.3 准备数据

按照DECA(Deep Expression Capture and Animation)的说明获取所需的三个文件('generic_model.pkl'、'deca_model.tar'、'FLAME_albedo_from_BFM.npz'),并将它们放置在/DECA/data目录下。

2.4 视频预处理

为训练或测试方法准备视频数据。首先创建一个文件夹用于存放视频,然后将视频放入videos子文件夹中。运行以下命令进行视频预处理:

./preprocess.sh <celeb_path> <mode>

其中,<celeb_path>是存放视频的文件夹路径,<mode>可以是traintestreference

2.5 情感操纵

下载预训练的操纵器模型,并解压缩。然后,根据需要选择以下两种方式之一来操纵视频中的表情:

2.5.1 标签驱动操纵

选择一种或多种基本情感(如happy、angry、surprised等),运行以下命令:

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir /manipulator_checkpoints --trg_emotions <emotions> --exp_name <exp_name>
2.5.2 参考驱动操纵

首先对参考视频进行预处理,然后运行以下命令:

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir /manipulator_checkpoints --reference_video <reference_video_path> --exp_name <exp_name>

3. 应用案例和最佳实践

3.1 电影后期制作

NED可以用于电影后期制作,通过操纵演员的面部表情来增强情感表达,同时保留语音的自然性。例如,在电影剪辑中,可以通过NED调整演员的表情,使其更符合剧情需求。

3.2 视频游戏

在视频游戏中,NED可以用于创建更加逼真的角色表情,增强游戏的沉浸感。开发者可以使用NED来实时调整游戏角色的表情,使其更符合游戏场景和玩家的操作。

3.3 虚拟现实(VR)

在虚拟现实应用中,NED可以用于创建高度逼真的虚拟角色,通过操纵虚拟角色的面部表情来增强用户的沉浸感。例如,在VR社交应用中,可以使用NED来调整虚拟角色的表情,使其更符合用户的情感状态。

4. 典型生态项目

4.1 DECA(Deep Expression Capture and Animation)

DECA是NED项目的基础,提供了3D面部表示和动画生成的能力。DECA通过深度学习技术实现了高精度的面部表情捕捉和动画生成,为NED提供了强大的技术支持。

4.2 FSGAN(Face Swapping GAN)

FSGAN是一个用于面部交换的GAN模型,可以与NED结合使用,实现更加复杂的面部表情操纵。通过FSGAN,NED可以实现不同演员之间的面部表情交换,进一步扩展其应用场景。

4.3 PyTorch

NED项目基于PyTorch框架开发,充分利用了PyTorch在深度学习领域的强大功能。PyTorch提供了丰富的工具和库,支持NED项目的高效开发和部署。

NED PyTorch implementation for NED (CVPR 2022). It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles. NED 项目地址: https://gitcode.com/gh_mirrors/ne/NED

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### OMNeT++ 使用教程 #### 安装配置 安装OMNeT++涉及几个重要步骤。首先,下载适合操作系统的版本并解压到指定目录。对于Linux用户来说,在命令行环境中执行一系列指令来编译源码是必要的过程[^1]。 ```bash ./configure make ``` 上述命令用于初始化构建环境以及编译整个框架。一旦成功完成这一步骤,则意味着已经准备好了一个基本的工作平台。 #### 配置开发环境 为了简化项目管理和代码编写流程,推荐使用集成开发环境(IDE),如Eclipse或Visual Studio Code配合特定插件支持C/C++开发。特别是针对OMNeT++, Eclipse IDE加上CDT(C/C++ Development Tooling)是一个流行的选择。通过官方提供的更新站点可以轻松安装OMNeT++专用的Eclipse插件,从而获得更好的用户体验和支持功能,比如语法高亮显示、自动补全等特性。 #### 模拟器编程基础 创建一个新的模拟模型通常始于定义网络拓扑结构和节点行为逻辑。在网络描述方面,《OMNeT++理论算法仿真详述》提到过,`NED`语言被用来设计物理布局;而组件内部运作则依赖于C++实现。当涉及到具体的应用场景时,开发者可能还需要考虑如何利用现有的模块库或者自定义新的通信协议栈。 关于配置文件`omnetpp.ini`的作用不可忽视——它不仅告知模拟程序即将运行哪个网络实例,而且允许调整各种参数设置以适应不同的实验需求。此文件中的每一行如果是以字符`#`开头的话会被视为注释而不被执行处理。 ```ini # Example of omnetpp.ini configuration file content network = MyNetworkName sim-time-limit = 10s ``` 以上片段展示了怎样设定一个简单的仿真实验时间长度限制为例说明了这种灵活性的价值所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳权罡Konrad

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值