coc-prettier: Neovim 的 Prettier 扩展详细指南

coc-prettier: Neovim 的 Prettier 扩展详细指南

coc-prettierPrettier extension for coc.nvim.项目地址:https://gitcode.com/gh_mirrors/co/coc-prettier

1. 项目目录结构及介绍

coc-prettier 是一个专为 Neovim 设计的 Prettier 集成扩展,它简化了代码格式化的流程,确保你的代码风格一致。由于这是一个基于 Node.js 的扩展,并且托管在 GitHub 上,其典型的Node.js项目目录结构大致如下:

  • src: 包含主要的源代码文件,用于实现与 Neovim 和 Prettier 交互的功能。
  • package.json: 这是项目的元数据文件,记录了项目依赖、脚本命令和其他重要信息。
  • README.md: 用户手册,包含了安装步骤、配置说明以及一些常见问答。
  • test: 若存在,通常包含测试用例,确保代码质量。
  • .gitignore: 列出了 Git 应忽略的文件或目录,防止不必要的文件被纳入版本控制。

实际的目录结构可能会因为项目更新而有所不同,但这些是最基本的部分。

2. 项目的启动文件介绍

对于 coc-prettier 这样的 Vim 插件,没有传统意义上的“启动文件”。它的激活与配置主要是通过 Neovim 的初始化文件(如 .vimrcinit.vim),通过 CoC(Completion-Client)框架来完成。用户通过运行特定的 Vim 命令 :CocInstall coc-prettier 来安装插件,之后无需单独启动 coc-prettier,它会在编辑支持的文件时自动激活。

3. 项目的配置文件介绍

全局配置 (coc-settings.json)

  • 全局配置位于用户的 Neovim 设置目录下,通常是 ~/.config/nvim/coc-settings.json
  • 核心配置项包括:
    • prettier.enable: 默认为 true,控制是否启用 coc-prettier。
    • prettier.ignorePath: 可以指定 .prettierignore 文件路径,或者设为 null 不读取忽略文件。
    • prettier.configPath: 指定自定义的 Prettier 配置文件路径。
    • prettier.prettierPath: 自定义 Prettier 模块的路径,若要使用特定版本的 Prettier。

局部配置 (prettierrc, .prettierrc.json, .prettierrc.yaml, 等)

  • 局部配置可以直接放在项目根目录中,比如命名为 .prettierrc
  • 这些配置文件允许为特定项目设置 Prettier 的格式化选项,例如 printWidth, singleQuote, trailingComma等。
  • 支持多种格式(.json, .yaml, .toml),根据项目需求选择。

通过以上方式,用户可以根据自己的编码习惯和项目需求灵活地调整 coc-prettier 的行为,确保代码格式的一致性和开发效率。记住,每次修改配置文件后,最好重启 Neovim 或者执行:CocRestart以使更改生效。

coc-prettierPrettier extension for coc.nvim.项目地址:https://gitcode.com/gh_mirrors/co/coc-prettier

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薄昱炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值