sort.nvim:Neovim的智能排序插件

sort.nvim:Neovim的智能排序插件

sort.nvimSorting plugin for Neovim that supports line-wise and delimiter sorting.项目地址:https://gitcode.com/gh_mirrors/so/sort.nvim

项目介绍

sort.nvim 是一个专为 Neovim 设计的排序插件,它提供了类似于 Neovim 内置 :sort 命令的简单命令,但扩展了功能以支持行 wise 和分隔符排序。该插件通过一个可配置的优先级列表智能地选择排序策略,从而减少了手动设置的需求,大多数排序场景只需在范围内执行 :Sort 命令即可处理。这尤其适合对代码格式有着高度洁癖的开发者,确保文本内容始终保持整洁有序。

项目快速启动

要快速开始使用 sort.nvim 插件,你可以采用流行的包管理器来安装。以下是两种常见方法:

使用 Packer (Lua 包管理器)

在你的 init.lua 中加入以下代码:

use({
  'sQVe/sort.nvim', 
  config = function()
    require("sort").setup{} -- 如需自定义配置,请在此处添加选项
  end
})

使用 Vim-Plug(Vim 脚本包管理器)

在你的 .vimrc 中加入以下代码,并确保运行 :PlugInstall 来安装插件:

Plug 'sQVe/sort.nvim'
" 如果需要自定义配置,在 ":call plug#end()" 之前添加以下脚本
lua << EOF
require("sort").setup{}
EOF

安装完成后,重启或源码重载 Neovim (:source % 或者重启) 即可使用。

快捷键示例

  • 添加简单的映射快速排序选中区域,例如:

    vnoremap <silent> go <Esc><Cmd>Sort<CR>
    

    允许你在可视模式下选区后直接排序。

应用案例和最佳实践

  1. 代码美化:在编写或维护代码时,可以利用此插件快速整理导入语句或者变量声明,保持代码块整洁。

  2. 数据整理:对于 Markdown 列表、CSV 数据或任何文本文件中的数据进行排序,提高数据的可读性和分析效率。

  3. 自动化工作流:结合自动格式化工具,如 prettier 或 rustfmt,可以在编辑前后自动排序特定部分,提升工作效率。

最佳实践

  • 配置个性化优先级列表以适应不同语言或文件类型的排序规则。
  • 利用 Visual 模式下的快速排序映射,提高交互性操作的便捷度。

典型生态项目

sort.nvim 作为一个专注文本排序的插件,其本身是 Neovim 生态的一部分,可以与其他增强开发体验的插件搭配使用,比如:

  • nvim-tree: 目录树视图,帮助快速定位文件并进行视觉化的批量排序操作前的选择。
  • coc.nvim: 提供代码补全与诊断,配合 sort.nvim 在重构时保持代码质量。
  • telescope.nvim: 强大的查找和导航工具,可以辅助找到需要排序的代码片段。

通过与这些生态项目结合,sort.nvim 可以更好地融入到你的 Neovim 工作流程中,提升整体的编程效率与体验。


以上就是 sort.nvim 的简要介绍及使用指南,希望可以帮助你更高效地利用这个强大的排序插件。

sort.nvimSorting plugin for Neovim that supports line-wise and delimiter sorting.项目地址:https://gitcode.com/gh_mirrors/so/sort.nvim

  • 18
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
vim中使用Coc.nvim插件可以提供强大的自动补全、语法检查和代码导航等功能。下面是如何在vim中使用Coc.nvim进行自定义的步骤: 1. 安装Coc.nvim插件:首先需要安装Coc.nvim插件,可以通过插件管理器(如Vundle、Pathogen、vim-plug等)进行安装。 2. 配置Coc.nvim:在vim的配置文件(一般是~/.vimrc或~/.config/nvim/init.vim)中添加以下配置: ``` " 启用Coc.nvim插件 let g:coc_enable = 1 " 配置Coc.nvim的扩展列表 let g:coc_global_extensions = [ \ 'coc-python', \ 'coc-clangd', \ 'coc-tsserver', \ ] " 配置Coc.nvim的键位绑定 nmap <silent> <leader>jd :call CocAction('jumpDefinition')<CR> nmap <silent> <leader>rn :call CocAction('rename')<CR> ``` 这里的配置示例中启用了Coc.nvim插件,并配置了一些常用的扩展(如coc-python、coc-clangd、coc-tsserver),还定义了一些快捷键绑定(如<leader>jd用于跳转到定义,<leader>rn用于重命名)。 3. 安装和配置Coc.nvim扩展:根据需要安装和配置相应的Coc.nvim扩展。例如,如果你需要在C语言项目中使用Coc.nvim的自动补全和语法检查功能,可以安装并配置coc-clangd扩展。 ``` :CocInstall coc-clangd ``` 安装完成后,可以在vim中使用`:CocConfig`命令打开Coc.nvim的配置文件,对扩展进行更详细的配置。 4. 自定义Coc.nvim的设置:可以通过`:CocConfig`命令打开Coc.nvim的配置文件,对Coc.nvim的行为进行自定义设置。例如,可以配置自动补全的触发方式、忽略某些文件类型等。 ``` { "suggest.autoTrigger": "always", "suggest.ignoreBuffer": true } ``` 这里的配置示例中设置了自动补全的触发方式为始终触发,并忽略当前缓冲区的文件。 以上是在vim中使用Coc.nvim进行自定义的基本步骤。你可以根据自己的需求进一步探索Coc.nvim插件的功能和配置。希望对你有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑悦莲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值