VITS开源项目安装与配置指南

VITS开源项目安装与配置指南

vits VITS implementation of Japanese, Chinese, Korean, Sanskrit and Thai vits 项目地址: https://gitcode.com/gh_mirrors/vits3/vits

1. 项目基础介绍

VITS(Voice Investment Technology for Singing)是一个开源项目,旨在实现日语、中文、韩语、梵语和泰语的语音合成。该项目基于深度学习技术,可以生成高质量的语音。主要编程语言为Python。

2. 项目使用的关键技术和框架

  • 编程语言:Python
  • 深度学习框架:PyTorch
  • 音频处理:librosa(音频处理库)、numPy(数值计算库)
  • 文本处理:使用了一系列自定义的cleaners来清洗和准备文本数据
  • 模型训练:采用了对抗性训练和循环神经网络(RNN)

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保系统中已安装Python 3.7版本(建议不使用更高版本,以避免兼容性问题)
  • 安装Git用于克隆项目
  • 确保系统中已安装CUDA(如果使用NVIDIA GPU加速)
  • 安装Docker(如果需要使用Docker容器进行项目运行)

安装步骤

克隆项目

首先,打开命令行界面,使用以下命令克隆项目:

git clone https://github.com/CjangCjengh/vits.git
安装依赖

进入项目目录,安装项目所需的Python包:

cd vits
pip install -r requirements.txt
配置项目

根据需要编辑config.json文件,设置相关的参数,例如:

  • n_speakers:设置为0,如果是单说话人
  • text_cleaners:选择合适的cleaner来清洗文本
准备数据集

创建包含音频文件和对应文本的文件列表。格式如下:

单说话人示例:

path/to/XXX.wav|こんにちは。

多人说话人示例:

path/to/XXX.wav|0|こんにちは。
预处理数据

运行以下命令进行数据预处理:

单说话人:

python preprocess.py --text_index 1 --filelists path/to/filelist_train.txt path/to/filelist_val.txt

多人说话人:

python preprocess.py --text_index 2 --filelists path/to/filelist_train.txt path/to/filelist_val.txt
训练模型

根据配置好的参数开始训练模型:

单说话人:

python train.py -c <config> -m <folder>

多人说话人:

python train_ms.py -c <config> -m <folder>

替换<config><folder>为实际的配置文件路径和数据文件夹路径。

以上步骤完成后,就可以开始使用VITS项目进行语音合成了。在训练和推理过程中,可以参考项目文档和代码中的注释来进一步了解和调整项目配置。

vits VITS implementation of Japanese, Chinese, Korean, Sanskrit and Thai vits 项目地址: https://gitcode.com/gh_mirrors/vits3/vits

### GPT-SOVITS 镜像文件下载资源 对于获取 GPT-SOVITS 的镜像文件或相关资源,通常可以从官方 GitHub 仓库或其他可信的开源平台找到。项目积极吸收其他开源项目的优秀特性,包括 VITS2、Bert-VITS2、GPT VITS 等,这表明该项目可能托管在一个活跃维护并定期更新的平台上[^1]。 #### 官方GitHub仓库 最可靠的方式是从官方 GitHub 仓库下载最新的发布版本。大多数开源项目都会在其主页上提供详细的安装指南以及必要的依赖项说明。建议访问 GPT-SOVITS 的官方页面来查找具体的下载链接和文档支持。 #### Docker Hub 或者其他容器注册表服务 如果需要使用预构建好的环境,则可以考虑通过Docker Hub或者其他类似的容器注册表服务来拉取对应的镜像。这些地方经常会有人分享已经配置好运行所需软件栈的docker images, 这样可以直接用于部署而无需手动编译整个工程。 #### 社区贡献者的个人站点 除了上述两种正式渠道外,在一些情况下也可以关注那些积极参到这个项目中的开发者们所运营的小站或是博客文章里提到的相关资源链接;不过需要注意甄别信息的真实性安全性。 为了确保能够顺利地获得所需的模型权重文件,应该按照指示将参考音频放置于指定路径下 `/root/Streamer-Sales/weights/gpt_sovits_weights/star/参考音频文件夹` 中以便后续处理流程正常运作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴镇业

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值