VITS开源项目安装与配置指南
1. 项目基础介绍
VITS(Voice Investment Technology for Singing)是一个开源项目,旨在实现日语、中文、韩语、梵语和泰语的语音合成。该项目基于深度学习技术,可以生成高质量的语音。主要编程语言为Python。
2. 项目使用的关键技术和框架
- 编程语言:Python
- 深度学习框架:PyTorch
- 音频处理:librosa(音频处理库)、numPy(数值计算库)
- 文本处理:使用了一系列自定义的cleaners来清洗和准备文本数据
- 模型训练:采用了对抗性训练和循环神经网络(RNN)
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保系统中已安装Python 3.7版本(建议不使用更高版本,以避免兼容性问题)
- 安装Git用于克隆项目
- 确保系统中已安装CUDA(如果使用NVIDIA GPU加速)
- 安装Docker(如果需要使用Docker容器进行项目运行)
安装步骤
克隆项目
首先,打开命令行界面,使用以下命令克隆项目:
git clone https://github.com/CjangCjengh/vits.git
安装依赖
进入项目目录,安装项目所需的Python包:
cd vits
pip install -r requirements.txt
配置项目
根据需要编辑config.json
文件,设置相关的参数,例如:
n_speakers
:设置为0,如果是单说话人text_cleaners
:选择合适的cleaner来清洗文本
准备数据集
创建包含音频文件和对应文本的文件列表。格式如下:
单说话人示例:
path/to/XXX.wav|こんにちは。
多人说话人示例:
path/to/XXX.wav|0|こんにちは。
预处理数据
运行以下命令进行数据预处理:
单说话人:
python preprocess.py --text_index 1 --filelists path/to/filelist_train.txt path/to/filelist_val.txt
多人说话人:
python preprocess.py --text_index 2 --filelists path/to/filelist_train.txt path/to/filelist_val.txt
训练模型
根据配置好的参数开始训练模型:
单说话人:
python train.py -c <config> -m <folder>
多人说话人:
python train_ms.py -c <config> -m <folder>
替换<config>
和<folder>
为实际的配置文件路径和数据文件夹路径。
以上步骤完成后,就可以开始使用VITS项目进行语音合成了。在训练和推理过程中,可以参考项目文档和代码中的注释来进一步了解和调整项目配置。