So-Vits-Svc 开源项目使用教程
so-vits-svcSoftVC VITS Singing Voice Conversion项目地址:https://gitcode.com/gh_mirrors/so/so-vits-svc
1. 项目的目录结构及介绍
So-Vits-Svc 项目的目录结构如下:
so-vits-svc/
├── configs/
│ ├── config.json
│ └── ...
├── data/
│ ├── dataset1/
│ ├── dataset2/
│ └── ...
├── models/
│ ├── model1.pth
│ ├── model2.pth
│ └── ...
├── scripts/
│ ├── train.py
│ ├── inference.py
│ └── ...
├── README.md
└── requirements.txt
目录介绍
- configs/: 存放项目的配置文件,如
config.json
。 - data/: 存放训练和测试数据集。
- models/: 存放训练好的模型文件。
- scripts/: 存放项目的脚本文件,如训练脚本
train.py
和推理脚本inference.py
。 - README.md: 项目说明文档。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录下,主要包括:
- train.py: 用于训练模型的脚本。
- inference.py: 用于推理和测试模型的脚本。
启动文件介绍
-
train.py:
- 功能:用于训练 So-Vits-Svc 模型。
- 使用方法:通过命令行运行
python scripts/train.py
,并根据需要传入配置文件路径等参数。
-
inference.py:
- 功能:用于使用训练好的模型进行推理。
- 使用方法:通过命令行运行
python scripts/inference.py
,并根据需要传入模型路径、输入数据路径等参数。
3. 项目的配置文件介绍
项目的配置文件主要位于 configs/
目录下,以 config.json
为例:
{
"model_params": {
"input_dim": 256,
"output_dim": 256,
"hidden_dim": 512
},
"training_params": {
"batch_size": 32,
"learning_rate": 0.001,
"num_epochs": 100
},
"data_params": {
"train_data_path": "data/dataset1",
"val_data_path": "data/dataset2"
}
}
配置文件介绍
- model_params: 模型参数配置,包括输入维度、输出维度和隐藏层维度。
- training_params: 训练参数配置,包括批次大小、学习率和训练轮数。
- data_params: 数据路径配置,包括训练数据路径和验证数据路径。
通过修改这些配置文件,可以调整模型的训练和推理行为。
以上是 So-Vits-Svc 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用该项目。
so-vits-svcSoftVC VITS Singing Voice Conversion项目地址:https://gitcode.com/gh_mirrors/so/so-vits-svc