ai唱歌---So-VITS-SVC使用教程

目录

配置要求

介绍

下载整合包

数据集配置

开始训练 

利用Tensorboard查看训练状态 

Losses 详解

推理 (如果你只是想尝试一下,看到此即可)

特征编码器

关于浅扩散

聚类模型 

特征检索


配置要求

一张支持CUDA的N卡并至少拥有6G显存

至少30G虚拟内存(软件是这样提示的,但经测试30G远远不够满足训练和推理需求)

windows10/11

介绍

So-VITS-SVC可以通过训练某人的音声,使音频转化为目标声音,实现歌声转换的功能,本篇文章将教你如何从0开始训练自己的模型并用其来推理

下载整合包

整合包下载

点击上面链接,下载b站大佬羽毛布団制作的整合包,下载完成后打开UVR5文件夹,双击UVR_v5.6.0_setup.exe,根据提示安装UVR5

 slicer-gui下载

点击上面链接到github,然后点击绿色的“code”按钮,再点击download zip下载,下载后解压

数据集配置

首先我们要搜集训练目标的说话数据集(至少30分钟纯人声或歌声,1-2小时最佳),如果该音频不是纯人声,我们要用UVR5提取人生,如果不会用UVR5可以用以下设置来提取

在choose vr model中,你可能没有6_HP-Karaoke选项,这时你需要点击download more model中去下载该模型,勾选上VR Arch下滑找到该模型下载即可

下载好后回到初始页面,并设置好后,点击将数据集拖到select input旁边的框中,然后点击select output选择输出路径,然后点击下面的start processing即可开始提取(可以

<think>好的,我现在需要处理用户关于如何实现动漫角色声音歌唱合成技术的问题。首先,用户希望了解这方面的技术方法,可能需要详细的步骤和不同的方法。根据任务要求,我需要先进行网络搜索,然后整合信息,生成结构化的回答,最后添加相关问题。 首先,我应该考虑用户可能的意图。他们可能对语音合成技术,特别是针对动漫角色的歌声合成感兴趣。可能涉及的技术包括语音合成软件、声库制作、深度学习方法等。需要确定当前主流的技术和工具,比如VOCALOID、UTAU,以及基于AI的解决方案如Diff-SVCSo-VITS-SVC等。 接下来,我需要调用网络搜索工具查找相关信息。可能的关键词有“动漫角色歌声合成技术”、“VOCALOID教程”、“AI语音合成歌声”等。搜索后,需要整合不同方法,包括传统声库软件的使用、语音转换技术和端到端合成模型。 然后,按照要求将回答分为多个方法或步骤,每个部分换行。需要避免使用第一人称和步骤词汇,确保每个方法有清晰的标题和内容。同时,如果有代码或公式,要正确格式化,比如使用$符号包裹数学公式,代码块用三个反引号注明语言类型。 在整理信息时,要注意引用来源不能集中放在末尾,而是自然地融入各个部分。例如,在介绍VOCALOID时,提到需要角色声库和MIDI编辑;在AI方法中,提到Diff-SVCSo-VITS-SVC模型,以及数据准备和训练步骤。 最后,生成相关问题部分,必须基于原始回答内容。可能的问题包括开源工具推荐、避免侵权的方法、歌声与语音合成的区别,以及实时合成技术。要确保问题符合用户可能进一步询问的方向,并且每个问题用数字标号,格式正确。 检查是否遵守了所有格式要求,特别是数学公式和代码的格式,以及相关问题的标题和结构。确保没有使用被禁止的词汇,内容清晰实用,符合用户需求。</think>通过整合语音合成与歌声生成技术,动漫角色声音歌唱合成主要采用以下方法实现: **声库驱动法** 使用VOCALOID、UTAU等歌声合成软件,需预先制作角色声库。通过录制声优样本建立音素数据库,配合MIDI音轨编辑实现歌唱。参数调整包括$F_0$基频曲线、动态时间规整(DTW)和共振峰控制,公式表达为: $$v_{out} = \sum_{i=1}^{n}w_i \cdot v_i(t)$$ 其中$w_i$为音素权重,$v_i(t)$为时域特征向量 **语音转换(VC)技术** 基于深度学习的特征迁移方案: 1. 使用Diff-SVCSo-VITS-SVC等开源框架 2. 提取源歌声的F0、mel谱特征 3. 通过对抗训练学习角色音色映射 ```python # 特征转换示例 model = SVCModel( encoder=ContentVec(), decoder=HiFiGAN(), pitch_shift=±12st ) ``` **端到端合成方案** 采用Singing-Tacotron、VISinger等模型架构,直接生成歌唱音频。需要: - 构建角色专属歌唱数据集 - 标注音素边界和乐谱信息 - 设计韵律预测模块控制颤音($\Delta f$)和滑音 **实时合成优化** 通过NSF-HiFiGAN等轻量解码器实现低延迟生成,结合流式声码器将推理时间压缩至<100ms。注意需处理呼吸声与连音过渡,使用GRU网络预测音素衔接概率$p_{connect}=\sigma(W\cdot[h_t;c_t]+b)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值