ACE:协作多智能体Q学习与双向动作依赖

ACE:协作多智能体Q学习与双向动作依赖

ACE [AAAI 2023] Official PyTorch implementation of paper "ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency". ACE 项目地址: https://gitcode.com/gh_mirrors/ace9/ACE

项目介绍

ACE(Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency) 是一个创新的多智能体强化学习(MARL)框架,旨在解决复杂的多智能体协作问题。ACE将MARL问题视为一个序列决策过程,通过引入双向动作依赖机制,显著提升了多智能体系统的协作效率和决策能力。

ACE架构图

ACE的核心思想是通过双向动作依赖来增强智能体之间的协作,使得每个智能体在做出决策时能够考虑到其他智能体的动作影响,从而实现更高效的团队合作。

项目技术分析

ACE基于Q-learning算法,通过引入双向动作依赖机制,解决了传统多智能体强化学习中存在的动作依赖问题。具体来说,ACE通过以下几个关键技术点实现了其高效的多智能体协作:

  1. 双向动作依赖:ACE通过双向动作依赖机制,使得每个智能体在做出决策时能够考虑到其他智能体的动作影响,从而实现更高效的团队合作。
  2. 多智能体Q-learning:ACE采用了多智能体Q-learning算法,通过联合学习多个智能体的Q值函数,实现了智能体之间的协同决策。
  3. 环境适应性:ACE支持多种复杂环境,包括StarCraft II和Google Research Football等,能够在不同环境中实现高效的多智能体协作。

项目及技术应用场景

ACE适用于多种需要多智能体协作的应用场景,特别是在以下领域具有广泛的应用前景:

  1. 游戏AI:ACE可以用于开发复杂的多智能体游戏AI,如星际争霸II和足球游戏,提升游戏AI的智能水平和协作能力。
  2. 机器人协作:ACE可以应用于机器人协作任务,如多机器人协同搬运、多机器人协同探索等,提升机器人的协作效率和任务完成能力。
  3. 自动驾驶:ACE可以用于自动驾驶中的多车协同,提升自动驾驶车辆在复杂交通环境中的协作能力和安全性。

项目特点

ACE具有以下几个显著特点,使其在多智能体强化学习领域脱颖而出:

  1. 高效协作:通过双向动作依赖机制,ACE实现了智能体之间的高效协作,显著提升了多智能体系统的整体性能。
  2. 环境适应性强:ACE支持多种复杂环境,能够在不同环境中实现高效的多智能体协作,具有较强的环境适应性。
  3. 易于集成:ACE提供了详细的安装和使用指南,用户可以轻松地将ACE集成到自己的项目中,快速实现多智能体协作。

结语

ACE作为一个创新的多智能体强化学习框架,通过引入双向动作依赖机制,显著提升了多智能体系统的协作效率和决策能力。无论是在游戏AI、机器人协作还是自动驾驶等领域,ACE都展现出了巨大的应用潜力。如果你正在寻找一个高效的多智能体协作解决方案,ACE无疑是一个值得尝试的选择。

立即访问ACE项目主页,开始你的多智能体协作之旅吧!

ACE [AAAI 2023] Official PyTorch implementation of paper "ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency". ACE 项目地址: https://gitcode.com/gh_mirrors/ace9/ACE

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通作业场景中的常见载具 - Buoy(浮标):水域导航安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参者的目标检测 标注格式: YOLO格式标注,含目标边界框类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框目标实际尺寸高度吻合 场景适配性: 包含近岸开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万蝶娴Harley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值