PyLift 使用教程

PyLift 使用教程

pyliftUplift modeling package.项目地址:https://gitcode.com/gh_mirrors/py/pylift

1. 项目介绍

PyLift 是一个由 Wayfair 公司开源的 Python 库,专注于提升模型(Uplift Modeling)的应用。此库的目标是提供快速、灵活和有效的工具,以进行 A/B 测试分析并评估在线实验的效果。它依赖于其他流行的数据科学包,如 XGBoost, Scikit-Learn, Pandas 和 Numpy,旨在简化数据分析流程。

2. 项目快速启动

安装 PyLift

首先,确保已安装了 pip,然后可以通过以下命令安装 PyLift:

pip install pylift

快速开始 - 模拟数据

创建一个简单的模拟数据集,然后用 PyLift 进行基础分析:

import pandas as pd
from sklearn.model_selection import train_test_split
from pylift.data import make_uplift_data
from pylift.models import XGBUpLearner

# 创建模拟数据
data = make_uplift_data(n_samples=1000, random_state=42)

# 分割训练集和测试集
train_df, test_df = train_test_split(data, test_size=0.2, random_state=42)

# 训练模型
upl = XGBUpLearner()
upl.fit(train_df[['features']], train_df['treatment'], train_df['response'])

# 预测并评估
y_pred = upl.predict(test_df[['features']])
upl.eval(test_df, y_pred)

3. 应用案例和最佳实践

完整 Demo 示例

  1. 生成模拟数据
  2. 初始化模型
  3. 数据 EDA 与特征选择
  4. 超参数优化与模型拟合
  5. 模型评估
  6. 通过误差曲线提高模型
  7. 用自定义目标函数
  8. 切换不同的模型

案例详情略,可参照官方文档或相关博客文章深入学习。

4. 典型生态项目

  • CasualML: 由 Uber 开源的提升建模 Python 包
  • R Uplift Package: R 语言中的提升模型库
  • Opossum: 用于生成合成提升数据的 Python 包
  • EconML: ALICE(自动化因果学习和经济学)包,专注于因果推理和经济建模
  • pymatch: 提供匹配算法以进行因果推断和评估

以上就是 PyLift 的基本介绍及快速上手指南。更多详细信息和高级用法,建议查阅官方文档

pyliftUplift modeling package.项目地址:https://gitcode.com/gh_mirrors/py/pylift

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜虹笛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值