PyLift 使用教程
pyliftUplift modeling package.项目地址:https://gitcode.com/gh_mirrors/py/pylift
1. 项目介绍
PyLift 是一个由 Wayfair 公司开源的 Python 库,专注于提升模型(Uplift Modeling)的应用。此库的目标是提供快速、灵活和有效的工具,以进行 A/B 测试分析并评估在线实验的效果。它依赖于其他流行的数据科学包,如 XGBoost, Scikit-Learn, Pandas 和 Numpy,旨在简化数据分析流程。
2. 项目快速启动
安装 PyLift
首先,确保已安装了 pip,然后可以通过以下命令安装 PyLift:
pip install pylift
快速开始 - 模拟数据
创建一个简单的模拟数据集,然后用 PyLift 进行基础分析:
import pandas as pd
from sklearn.model_selection import train_test_split
from pylift.data import make_uplift_data
from pylift.models import XGBUpLearner
# 创建模拟数据
data = make_uplift_data(n_samples=1000, random_state=42)
# 分割训练集和测试集
train_df, test_df = train_test_split(data, test_size=0.2, random_state=42)
# 训练模型
upl = XGBUpLearner()
upl.fit(train_df[['features']], train_df['treatment'], train_df['response'])
# 预测并评估
y_pred = upl.predict(test_df[['features']])
upl.eval(test_df, y_pred)
3. 应用案例和最佳实践
完整 Demo 示例
- 生成模拟数据
- 初始化模型
- 数据 EDA 与特征选择
- 超参数优化与模型拟合
- 模型评估
- 通过误差曲线提高模型
- 用自定义目标函数
- 切换不同的模型
案例详情略,可参照官方文档或相关博客文章深入学习。
4. 典型生态项目
- CasualML: 由 Uber 开源的提升建模 Python 包
- R Uplift Package: R 语言中的提升模型库
- Opossum: 用于生成合成提升数据的 Python 包
- EconML: ALICE(自动化因果学习和经济学)包,专注于因果推理和经济建模
- pymatch: 提供匹配算法以进行因果推断和评估
以上就是 PyLift 的基本介绍及快速上手指南。更多详细信息和高级用法,建议查阅官方文档。
pyliftUplift modeling package.项目地址:https://gitcode.com/gh_mirrors/py/pylift