开源项目 Domain-generalization 使用教程

开源项目 Domain-generalization 使用教程

Domain-generalization项目地址:https://gitcode.com/gh_mirrors/do/Domain-generalization

1. 项目的目录结构及介绍

Domain-generalization/
├── data/
│   ├── processed/
│   └── raw/
├── models/
│   ├── __init__.py
│   └── model.py
├── notebooks/
│   ├── exploration.ipynb
│   └── analysis.ipynb
├── src/
│   ├── __init__.py
│   ├── data_loader.py
│   └── trainer.py
├── config/
│   ├── default.yaml
│   └── custom.yaml
├── main.py
├── requirements.txt
└── README.md
  • data/: 存储数据文件,包括原始数据和处理后的数据。
  • models/: 包含模型定义的文件。
  • notebooks/: Jupyter Notebook 文件,用于数据探索和分析。
  • src/: 包含项目的主要源代码,如数据加载器和训练器。
  • config/: 配置文件,包括默认配置和自定义配置。
  • main.py: 项目的启动文件。
  • requirements.txt: 项目依赖的 Python 包列表。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责初始化配置、加载数据、训练模型等主要功能。以下是 main.py 的基本结构:

import argparse
from src.data_loader import DataLoader
from src.trainer import Trainer
from config.default import config

def main(args):
    # 加载配置
    config.merge_from_file(args.config_file)
    
    # 初始化数据加载器
    data_loader = DataLoader(config)
    
    # 初始化训练器
    trainer = Trainer(config, data_loader)
    
    # 开始训练
    trainer.train()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Domain Generalization Project")
    parser.add_argument("--config_file", default="config/default.yaml", help="path to config file")
    args = parser.parse_args()
    main(args)

3. 项目的配置文件介绍

config/ 目录下包含两个配置文件:default.yamlcustom.yaml

default.yaml

data:
  path: "data/processed"
  batch_size: 32

model:
  name: "basic_model"
  learning_rate: 0.001

train:
  epochs: 10
  save_path: "checkpoints/"

custom.yaml

data:
  path: "data/custom"
  batch_size: 64

model:
  name: "custom_model"
  learning_rate: 0.01

train:
  epochs: 20
  save_path: "custom_checkpoints/"

配置文件中定义了数据路径、批量大小、模型名称、学习率、训练周期等参数。用户可以根据需要修改 custom.yaml 文件以自定义配置。

Domain-generalization项目地址:https://gitcode.com/gh_mirrors/do/Domain-generalization

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓娉靓Melinda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值