开源项目 Domain-generalization 使用教程
Domain-generalization项目地址:https://gitcode.com/gh_mirrors/do/Domain-generalization
1. 项目的目录结构及介绍
Domain-generalization/
├── data/
│ ├── processed/
│ └── raw/
├── models/
│ ├── __init__.py
│ └── model.py
├── notebooks/
│ ├── exploration.ipynb
│ └── analysis.ipynb
├── src/
│ ├── __init__.py
│ ├── data_loader.py
│ └── trainer.py
├── config/
│ ├── default.yaml
│ └── custom.yaml
├── main.py
├── requirements.txt
└── README.md
data/
: 存储数据文件,包括原始数据和处理后的数据。models/
: 包含模型定义的文件。notebooks/
: Jupyter Notebook 文件,用于数据探索和分析。src/
: 包含项目的主要源代码,如数据加载器和训练器。config/
: 配置文件,包括默认配置和自定义配置。main.py
: 项目的启动文件。requirements.txt
: 项目依赖的 Python 包列表。README.md
: 项目说明文档。
2. 项目的启动文件介绍
main.py
是项目的启动文件,负责初始化配置、加载数据、训练模型等主要功能。以下是 main.py
的基本结构:
import argparse
from src.data_loader import DataLoader
from src.trainer import Trainer
from config.default import config
def main(args):
# 加载配置
config.merge_from_file(args.config_file)
# 初始化数据加载器
data_loader = DataLoader(config)
# 初始化训练器
trainer = Trainer(config, data_loader)
# 开始训练
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Domain Generalization Project")
parser.add_argument("--config_file", default="config/default.yaml", help="path to config file")
args = parser.parse_args()
main(args)
3. 项目的配置文件介绍
config/
目录下包含两个配置文件:default.yaml
和 custom.yaml
。
default.yaml
data:
path: "data/processed"
batch_size: 32
model:
name: "basic_model"
learning_rate: 0.001
train:
epochs: 10
save_path: "checkpoints/"
custom.yaml
data:
path: "data/custom"
batch_size: 64
model:
name: "custom_model"
learning_rate: 0.01
train:
epochs: 20
save_path: "custom_checkpoints/"
配置文件中定义了数据路径、批量大小、模型名称、学习率、训练周期等参数。用户可以根据需要修改 custom.yaml
文件以自定义配置。
Domain-generalization项目地址:https://gitcode.com/gh_mirrors/do/Domain-generalization
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考