Figure Generator 项目教程
1、项目介绍
Figure Generator 是一个用于轻松组装比较图像的 Python 包。它支持 LaTeX、PPTX 和 HTML 格式,适用于渲染研究中的图像比较需求。项目的主要目标是帮助研究人员快速生成和分析图像,特别是在需要创建多个比较图的情况下。
2、项目快速启动
安装
首先,确保你已经安装了 Python 3.11+。然后,使用以下命令安装 Figure Generator 及其依赖项:
python -m pip install figuregen
快速生成图像
以下是一个简单的示例,展示如何使用现有的模板快速生成图像:
import simpleimageio as sio
import figuregen
from figuregen.util.templates import CropComparison
from figuregen.util.image import Cropbox
# 使用模板生成图像
figure = CropComparison(
reference_image=sio.read("images/pool/pool.exr"),
method_images=[
sio.read("images/pool/pool-60s-path.exr"),
sio.read("images/pool/pool-60s-upsmcmc.exr"),
sio.read("images/pool/pool-60s-radiance.exr"),
sio.read("images/pool/pool-60s-full.exr")
],
crops=[
Cropbox(top=100, left=200, height=96, width=128, scale=5),
Cropbox(top=100, left=450, height=96, width=128, scale=5)
],
scene_name="Pool",
method_names=["Reference", "Path Tracer", "UPS+MCMC", "Radiance-based", "Ours"]
)
# 生成图像
figuregen.figure([figure], width_cm=17.7, filename="pool_with_template.pdf")
3、应用案例和最佳实践
应用案例
Figure Generator 在渲染研究中非常有用,特别是在需要生成多个比较图的情况下。例如,研究人员可以使用它来生成不同渲染算法的比较图,或者在论文中展示多个场景的渲染结果。
最佳实践
- 使用模板:项目提供了多个模板,可以帮助你快速生成常见的图像布局。建议在开始时使用这些模板,然后根据需要进行修改。
- 自定义布局:如果你需要更复杂的布局,可以直接修改生成的 Grid 对象,或者创建自己的布局模板。
- 错误分析:项目提供了多种错误度量方法,可以帮助你不仅从视觉上,而且从数学上比较图像。
4、典型生态项目
Figure Generator 作为一个图像生成工具,可以与其他图像处理和渲染工具结合使用。以下是一些典型的生态项目:
- OpenCV:用于图像处理和分析。
- Matplotlib:用于生成图表和可视化数据。
- LaTeX:用于生成高质量的 PDF 文档。
- Python-pptx:用于生成 PowerPoint 演示文稿。
通过结合这些工具,你可以创建更复杂的图像和文档,满足各种研究需求。