knowledge-graph-of-thoughts:集成LLM推理与动态知识图的AI助手架构

knowledge-graph-of-thoughts:集成LLM推理与动态知识图的AI助手架构

knowledge-graph-of-thoughts Official Implementation of "Affordable AI Assistants with Knowledge Graph of Thoughts" knowledge-graph-of-thoughts 项目地址: https://gitcode.com/gh_mirrors/kn/knowledge-graph-of-thoughts

项目介绍

knowledge-graph-of-thoughts(KGoT)是一种创新的AI助手架构,它将大型语言模型(LLM)的推理能力与动态构建的知识图谱(KGs)相结合。KGoT能够从任务相关的信息中提取并构建动态的知识图谱表示,并通过外部工具(如数学求解器、网络爬虫和Python脚本)进行迭代增强。这种任务相关知识的结构化表示,使得低成本模型能够有效地解决复杂任务。

项目技术分析

KGoT系统设计为一个模块化和灵活的框架,包括三个主要组件:控制器(Controller)、图存储(Graph Store)和集成工具(Integrated Tools),每个组件在任务解决过程中都发挥着关键作用。

  • 控制器(Controller):提供对KGoT管道中可自定义参数的细粒度控制,并协调基于KG的推理过程。
  • 图存储(Graph Store):提供支持各种知识图谱后端的模块化接口。初始支持Neo4j和NetworkX。
  • 集成工具(Integrated Tools):允许灵活和可扩展的工具使用,并赋予框架多模态推理能力。

项目技术应用场景

KGoT框架主要应用于构建成本效益高的AI助手,适用于需要结合外部信息和复杂推理的任务。例如,它可以用于:

  • 复杂问题解答:在客户服务、技术支持和学术研究中,对用户提出的问题进行深入理解和回答。
  • 文档摘要:自动从大量文档中提取关键信息,生成摘要。
  • 数据分析:在数据密集型任务中,自动构建知识图谱以支持数据挖掘和洞察发现。

项目特点

  1. 动态知识图谱构建:KGoT能够根据任务需求动态构建知识图谱,提供任务相关的结构化信息。
  2. 低成本模型:通过集成工具和动态知识图谱,即使低成本模型也能够有效解决复杂任务。
  3. 模块化设计:框架的模块化设计使得它易于扩展和适应不同的需求。
  4. 多模态推理:通过集成多种工具,KGoT能够实现多模态推理,提供更全面的解决方案。
  5. 容器化部署:为了提供安全的执行环境,关键模块如Neo4j图数据库和Python代码工具被容器化,确保了代码执行的安全性。

以下是如何使用KGoT的快速入门指南:

安装KGoT

首先,确保您的系统中安装了Python 3.10或更高版本。

git clone https://github.com/spcl/knowledge-graph-of-thoughts.git
cd knowledge-graph-of-thoughts/
pip install -e .
playwright install

配置API密钥和模型

请根据需要更新kgot/config_llms.json文件中的API密钥和模型信息。

对于SurferAgent工具,需要设置SerpAPI的API密钥,可在kgot/config_tools.json文件中完成。

设置容器化环境

为了提供安全且一致的执行环境,关键模块如Neo4j图数据库和Python代码工具被容器化。

cd docker_instances/
chmod -R 777 neo4j_docker/snapshots # 为快照日志授予权限
docker compose --env-file neo4j_docker/.env up

快速使用

KGoT主要使用GAIA基准进行评估,但也提供了直接使用任务描述来运行KGoT的方法。

kgot single -p "What is a knowledge graph?"

您还可以选择后端并传递文件:

kgot --db_choice neo4j --controller_choice directRetrieve single --p "Could you summarize the content of these files for me?" --files [path/to/file1] [path/to/file2]

通过以上介绍,KGoT无疑是一个值得关注的开源项目,特别是对于希望在AI助手领域实现创新的开发者而言。它不仅提供了动态知识图谱构建的强大能力,还通过模块化设计和容器化部署,确保了易用性和安全性。赶快尝试KGoT,开启您在AI领域的创新之旅吧!

knowledge-graph-of-thoughts Official Implementation of "Affordable AI Assistants with Knowledge Graph of Thoughts" knowledge-graph-of-thoughts 项目地址: https://gitcode.com/gh_mirrors/kn/knowledge-graph-of-thoughts

内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。最后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乔嫣忱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值