CLIP4Cir 项目使用教程
1. 项目的目录结构及介绍
CLIP4Cir/
├── images/
├── static/
├── templates/
├── .gitignore
├── README.md
├── app.py
├── data_utils.py
├── extract_features.py
├── hubconf.py
├── model.py
├── utils.py
- images/: 存放项目相关的图片文件。
- static/: 存放静态文件,如CSS和JavaScript文件。
- templates/: 存放HTML模板文件。
- .gitignore: Git忽略文件配置。
- README.md: 项目说明文档。
- app.py: 项目的启动文件。
- data_utils.py: 数据处理工具文件。
- extract_features.py: 特征提取工具文件。
- hubconf.py: PyTorch Hub配置文件。
- model.py: 模型定义文件。
- utils.py: 通用工具函数文件。
2. 项目的启动文件介绍
app.py 是项目的启动文件,负责初始化应用并启动服务器。以下是 app.py
的基本结构:
from flask import Flask
app = Flask(__name__)
@app.route('/')
def home():
return "Welcome to CLIP4Cir!"
if __name__ == '__main__':
app.run(debug=True)
- Flask 应用初始化:
app = Flask(__name__)
初始化 Flask 应用。 - 路由定义:
@app.route('/')
定义了应用的主页路由。 - 启动服务器:
app.run(debug=True)
启动 Flask 服务器,并开启调试模式。
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过环境变量或命令行参数进行配置。以下是一些常见的配置参数:
- api-key: Comet API 密钥。
- workspace: Comet 工作区。
- experiment-name: Comet 实验名称。
- projection-dim: 投影维度。
- hidden-dim: 隐藏层维度。
- num-epochs: 训练轮数。
- clip-model-name: CLIP 模型名称。
- clip-model-path: 微调后的 CLIP 模型路径。
- combiner-lr: 组合器学习率。
- batch-size: 批量大小。
- clip-bs: CLIP 批量大小。
- transform: 目标填充变换。
- target-ratio: 目标比例。
- save-training: 保存训练结果。
- save-best: 保存最佳结果。
- validation-frequency: 验证频率。
这些配置参数可以通过命令行传递,例如:
python src/train.py --api-key YOUR_API_KEY --workspace YOUR_WORKSPACE --experiment-name YOUR_EXPERIMENT_NAME
通过这种方式,可以灵活地配置和运行项目。