Depth Pro: 快速启动和使用指南

Depth Pro: 快速启动和使用指南

ml-depth-pro Depth Pro: Sharp Monocular Metric Depth in Less Than a Second. ml-depth-pro 项目地址: https://gitcode.com/gh_mirrors/ml/ml-depth-pro

1. 项目介绍

Depth Pro 是一个开源项目,致力于实现单目相机在不到一秒的时间内估计出高分辨率的、具有极高清晰度和细节的度量深度图。该项目包括一个高效的多尺度视觉转换器用于密集预测,结合了现实和合成数据集的训练协议,以实现高度量精度和精细边界追踪。此外,项目还提供了用于评估深度图边界准确性的专用评价指标以及从单张图像估计焦距的最先进技术。

2. 项目快速启动

环境搭建

首先,建议设置一个虚拟环境。例如,使用 miniconda 创建并激活虚拟环境:

conda create -n depth-pro -y python=3.9
conda activate depth-pro

接下来,安装 depth_pro 包:

pip install -e .

下载预训练模型

运行以下命令以下载预训练模型:

source get_pretrained_models.sh

命令行使用

项目提供了一个辅助脚本来直接在单个图像上运行模型:

# 对单个图像进行预测
depth-pro-run -i ./data/example.jpg

要查看所有可用的选项,运行:

depth-pro-run -h

Python 中使用

在 Python 中使用模型,首先需要从 PIL 导入 Image,然后导入 depth_pro

from PIL import Image
import depth_pro

# 加载模型和预处理转换
model, transform = depth_pro.create_model_and_transforms()
model.eval()

# 加载并预处理图像
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)

# 运行推断
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"]  # 深度,单位为米
focallength_px = prediction["focallength_px"]  # 焦距,单位为像素

3. 应用案例和最佳实践

在此部分,您可以介绍如何将 Depth Pro 应用于实际场景,如自动驾驶、机器人导航或增强现实等。提供一些示例代码和场景特定的最佳实践,帮助用户更好地理解如何集成和使用 Depth Pro。

4. 典型生态项目

在这一部分,您可以列出一些使用 Depth Pro 的典型开源项目或商业产品,展示 Depth Pro 在实际应用中的多样性和广泛性。这可以包括其他贡献者开发的插件、工具或集成Depth Pro技术的应用程序。

ml-depth-pro Depth Pro: Sharp Monocular Metric Depth in Less Than a Second. ml-depth-pro 项目地址: https://gitcode.com/gh_mirrors/ml/ml-depth-pro

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江奎钰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值