自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 问答 (2)
  • 收藏
  • 关注

原创 SCANet代码解读

SCANet(Self-Calibrated Attention Network)是一个用于图像去雾的生成对抗网络(GAN),它包括生成器(Generator)和判别器(Discriminator)两个主要部分。生成器用于生成去雾后的图像,而判别器用于区分真实图像和生成图像。(文章设计了一个生成器。判别器部分:由一系列卷积层和激活函数组成。:快速去卷积模块,用于预处理输入图像。

2024-07-03 15:59:11 246

原创 Trident Dehazing Network

针对现有的去雾方法对非均匀雾霾的鲁棒性差,以及高雾霾区域的信息未知且难以估计,导致去雾效果模糊的问题,提出了一种由粗到精的模型Trident Dehazing Network(TDN),用于学习从有雾霾到无雾霾的图像映射,实现雾霾浓度的自动识别。具体地说,TDN由三个子网组成:编码器-解码器网(EDN)是TDN的主网,用于重建粗的无模糊特征;细节细化子网(DRN)用于细化编码器池化层中容易丢失的高频细节;

2024-07-02 11:16:10 1096

原创 DW-GAN: A Discrete Wavelet Transform GAN for NonHomoge-neous Dehazing

模糊的图像经常出现色彩失真、模糊和其他可见的质量下降。现有的一些基于cnn的方法在去除均匀雾霾方面有很好的效果,但在情况下,鲁棒性较差。原因主要有两方面。首先,由于,在除雾过程中容易丢失纹理细节。其次,由于,在有限的数据上训练容易导致过拟合问题。为了解决这两个问题,我们引入了一种新的二维离散小波变换去雾网络,即DW-GAN。具体来说,我们提出了一个双分支网络来解决上述问题。通过小波变换在DWT分支中的应用,可以保留更多的高频知识。

2024-07-01 15:56:13 1184

原创 SCANet: Self-Paced Semi-Curricular Attention Network forNon-Homogeneous Image Dehazing

非均匀霾的存在会导致景物模糊、色彩失真、对比度降低,现有的均匀去雾方法难以鲁棒地处理雾度的非均匀分布。非均匀去雾的关键挑战是有效地提取雾度的非均匀分布特征并高质量地重建雾度区域的细节。本文提出了一种新的去雾方法,我们提出了一种新的自定进度的半课程注意力网络,称为SCANet,针对非均匀图像去雾,重点是增强雾遮挡区域。我们的方法包括一个注意力发生器网络和场景重建网络。我们使用图像的亮度差异来限制注意力地图,并引入一个自定步调的半模糊模型。课程学习策略,以减少培训早期阶段的学习模糊性。

2024-06-28 17:56:38 1130

原创 LKD-Net: Large Kernel Convolution Network for Single Image Dehazing

基于深度卷积神经网络(CNN)的单幅图像去噪方法已经取得了很大的成功。以往的方法致力于通过增加网络的深度和宽度来提高网络的性能。目前的方法侧重于增加卷积核的大小,以受益于更大的接受野来增强其性能。然而,直接增加卷积核的大小会带来大量的计算开销和参数。为此,本文设计了一种由深度分解大核卷积块(DLKCB)和信道增强型前馈网络(CEFN)组成的大核卷积去雾块(LKD块)。所设计的DLKCB可以在不引入大量参数和计算开销的情况下,将深度大核卷积分解为较小的深度卷积和深度膨胀卷积。

2024-06-25 19:35:35 1092

原创 Accurate and lightweight dehazing viamulti-receptive-field non-local network and novelcontrastive

最近,基于深度学习的方法已经主导了图像去雾领域。尽管已经通过复杂的模型实现了非常有竞争力的去雾性能,但提取有用特征的有效解决方案仍然没有得到充分探索。此外,在许多视觉任务中取得突破的非局部网络尚未被适当地应用于图像去雾。因此,本文提出了一种由多流特征注意块(MSFAB)和交叉非局部块(CNLB)组成的多感受野非局部网络(MRFNLN),从提取更丰富的去雾特征入手,设计了多流特征提取(MSFE)子块,它包含三个具有不同感受野的平行卷积(即1 × 1,3 × 3,5 × 5)进行多尺度特征提取。

2024-06-20 11:44:58 746

原创 Non-aligned Supervision for Real Image Dehazing

由于天气条件的不可预测性,导致模糊图像和清晰图像对的不对齐,从真实世界图像中去除雾霾是一项挑战。本文提出了一种创新的去雾框架,该框架在非对齐监督下运行。该框架基于大气散射模型,由三个相互连接的网络组成:去雾,空气光和传输网络。特别地,我们探索了一种非对齐场景,即利用与输入模糊图像不对齐的清晰参考图像来监督去雾网络。为了实现这一点,我们提出了一种多尺度参考损失,它比较了参考图像和去雾输出之间的特征表示。我们的场景使得在现实环境中收集模糊/清晰图像对变得更容易,即使在未对准和移位视图的条件下。

2024-06-12 15:25:49 1160

原创 Depth Information Assisted Collaborative Mutual Promotion Network for SingleImage Dehazing

原文链接:https://www.semanticscholar.org/paper/Depth-Information-Assisted-Collaborative-Mutual-for-Zhang-Zhou/55e322bb5a18bd14d83d62617880dbfd52055fa8https://www.semanticscholar.org/paper/Depth-Information-Assisted-Collaborative-Mutual-for-Zhang-Zhou/55e322bb5

2024-06-11 17:05:19 918

原创 out of memory问题

本课题组资源有限,只能足服务器来跑。经常遇到out of memory这样的问题,就无法使用作者的参数去跑,只能把batch-size、epoch、 Iterations改得特别小,导致结果很低,请问这个问题该怎么解决?这里的10G指的是显存(cuda)的内存,一般情况下报错:cuda out of memorr,是由于分配到的显存不足。

2024-06-10 20:22:09 272

原创 复现代码,环境配置(DEA-Net为例,autodl平台)

然后再进入到pytorch环境中,安装torchvision.),在base下面激活pytorch和python环境,然后进入pytorch框架里面去安装所需要的库。(这里也会出现上面第二步的错误,解决方法一样。(三)第二条指令,进入pytorch环境(pytorch_1_10)进入DEA-Net目录下面(表明在项目里面去建立相应的环境)(四)安装库(全部一起安装可能会出错,采用逐个安装)(一)打开终端,输入conda init ,创建。5、根据运行报错去安装所缺少的库。4、安装所需要的库;

2024-06-09 14:09:22 507 2

原创 DEA-Net代码解读(自用)

具体来说,它将四种不同类型的卷积权重(中心差分卷积CDC、水平差分卷积HDC、垂直差分卷积VDC、和角差分卷积ADC)重新组合成单一的卷积权重,并将其保存为一个新的简化模型。每个类中__init__(self, hazy_path, clear_path):初始化函数接收两个路径参数,分别是雾霾图像和清晰图像的路径。主要包括设置训练环境、定义模型、加载数据、训练和评估模型等步骤。定义了三个数据集类: TrainDataset(训练)、TestDataset(测试)、 ValDataset(验证)。

2024-06-04 21:34:03 1258

原创 DEA-Net:基于细节增强卷积和内容引导注意力的单幅图像去雾

单幅图像去雾是一个具有挑战性的不适定问题,它需要从观测到的模糊图像中估计出潜在的无雾图像。现有的一些基于深度学习的方法致力于通过增加卷积的深度或宽度来提高模型的性能。卷积神经网络(CNN)结构的学习能力尚未得到充分的研究。本文提出了一种由细节增强卷积(DEConv)和内容引导注意(CGA)组成的细节增强注意块(DEAB)来增强特征学习,从而提高去雾性能。具体来说,DEConv将先验信息整合到正卷积层中,增强了表示和泛化能力。

2024-03-18 20:10:34 3586 3

原创 (自用)Vision Transformers for Single Image Dehazing模型解读

"linear" 指的是通过全连接层(线性映射)进行的线性变换。在自注意力机制的上下文中,这个线性变换分别应用于。datasets:用于记加载和处理数据集。读取图像并对图像格式等进行操作。经过线性变换后,会将输入的特征映射到另一个空间。utils里面的几个文件没看懂。mataul softmax:激活函数。configs:各个模型的参数。linear:全连接层。matmul:矩阵相乘。cropping:裁剪。affine:仿射变换。

2024-01-19 21:40:38 527 1

原创 MixDehazeNet : Mix Structure Block For Image Dehazing Network

摘要图像去雾是低层视觉领域的一个典型任务。以往的研究验证了大卷积核和注意力机制在去雾中的有效性。然而,存在两个缺点:当引入大的卷积核时容易忽略图像的多尺度特性,注意力模块的标准串联没有充分考虑不均匀的雾度分布。本文中,,解决了上述两个问题,具体来说,它主要由两部分组成:多尺度并行大卷积核模块和增强并行注意力模块。与单个大核相比,多尺度并行大核更能在去雾阶段考虑局部纹理。此外,本文提出了一种增强的并行注意力模块,其中注意力的并行连接在去雾不均匀分布方面表现得更好。

2024-01-18 16:57:04 1634 1

原创 (自用)Vision Transformer、Transformer、Swim Transformer

vector进入到Masked Multi-Head Attetion,Masked的意思是,我们在做self-Attetion layer时,这个decoder只会attend到它已经产生出来的sequence上。Patch Merging操作将相邻的小块合并为更大的块,以便在后续层级中对更大的块进行处理。是一种操作,用于将图像的分块表示合并为更大的块。Add & Norm操作,Feed Forward,再是Add & Norm,Linear和softmax,得到最终的output。

2024-01-12 13:26:19 1531 1

原创 Vision Transformers for Single Image Dehazing代码解读

然后,根据选择的GPU数量,将输入数据切分成多个块,并复制模型的副本到相应的GPU上。对于每个样本,该函数首先将输入图像输入模型并得到输出图像,然后计算输出图像与目标图像的 PSNR 和 SSIM,最后将结果保存到文件中。test[ ]和epoch的不同在哪里,为什么输出test有500次,prne和ssim括号外的数值和括号里的数值分别表示的是:当次测试的值和当前测试的平均值吗?这些函数和类可以在图像处理任务中使用,例如计算图像的平均值、读取和保存图像文件,以及在深度学习模型中转换图像的通道顺序。

2024-01-09 15:38:00 1306 2

原创 Vision Transformers for Single Image Dehazing解读

图像去雾是一种具有代表性的低级视觉任务,从模糊图像中估计出潜在的无雾图像。近年来,基于卷积神经网络的方法主导了图像去雾。然而,最近在高级视觉任务中取得突破的视觉Transformers,并没有为图像去雾带来新的维度。我们从流行的Swin Transformer开始,发现它的几个关键设计不适合图像去雾。为了为此,我们提出了DehazeFormer,它包括各种改进,例如。

2024-01-09 13:39:17 2729

原创 Vision Transformers for Single Image Dehazing基础知识

我们可以把前 �−1 层看作表示,把最后一层看作线性预测器。这种架构通常称为。

2024-01-05 15:25:12 1092 1

原创 crop size whole_imgProcess finished with exit code 255

运行代码时出现如上错误,请问怎么解决啊?

2024-01-02 14:22:34 406

原创 An All-in-One Network for Dehazing and Beyond (IEEE2017)用于除雾及其他应用的一体化网络

本文提出了一种使用卷积神经网络(CNN)构建的图像去雾模型,称为一体式去雾网络(AOD-Net)。它是基于重新制定的大气散射模型而设计的。AOD-Net 没有像以前的大多数模型那样分别估计传输矩阵和大气光,而是通过轻量级 CNN 直接生成干净的图像。这种新颖的端到端设计可以轻松地将 AOD-Net 嵌入到其他深度模型中,例如 Faster R-CNN,以提高模糊图像上的高级任务性能。合成和自然模糊图像数据集的实验结果表明,我们在 PSNR、SSIM 和主观视觉质量方面比最先进的技术具有更优越的性能。

2023-11-22 10:58:49 544 1

原创 图像去雾个人基础学习

精度:指的是psnr(峰值信噪比)和ssim(结构相似性)。psnr(峰值信噪比):表示一张带有噪声的图片和一张干净的图片之间的差异。ssim(结构相似性):衡量了两张图片之间的相似程度。取值范围为【0,1】,损失函数:衡量模型预测结果与真实值之间差异的函数,值代表了模型预测结果与真实目标之间的差异程度,也就是模型的拟合程度。学习率:即步长(stride),控制模型的学习进度。

2023-11-13 16:43:36 117

原创 使用AutoDL的一些小tips

2、使用阿里云盘来进行数据交互,将/root/autodl-tmp/的数据上传到网盘,然后,如果我们想在AutoDL上面访问网盘中的数据只需要选择对应的数据,点击下载即可,下载下来的数据会被放到/root/autodl-tmp/目录下,大的文件是以压缩包的形式,下载之后,对其进行解压。就实现了数据的交互(云端和网盘)——这个数据交互操作的意思是不是实现了多实例之间的数据传输?1、创建好实例后就开始计费了,但是我们进去后配置环境、上传数据等操作不需要GPU,此时换到无卡模式可以便宜很多。

2023-11-11 17:20:06 534 1

原创 RESIDE:Benchmarking Single Image Dehazing and Beyond

NYU2数据集有含有1449张RGBD图像,这些图像中包含464个不同的室内场景。组成NYU2数据集由三个部分组成:1.视频中对象的标注信息。2.由微软Kinect提供的RGB、深度和加速度数据。3.一个用于操作数据和标注的函数集。

2023-11-11 13:02:13 1501 8

原创 图像去雾基础代码1(个人学习) FFA模型

包含了用于。

2023-11-09 21:57:42 464

原创 Non-Local Image Dehazing非局部图像去雾(CVPR2016)

雾度限制可见度并降低室外图像中的图像对比度。退化对于每个像素是不同的,并且取决于场景点与相机的距离。这种依赖性在透射系数中表达,透射系数控制场景衰减和每个像素中的雾度量。先前的方法使用各种基于块的先验来解决单个图像去雾问题。另一方面,我们提出了一种新的,非本地的先验的基础上的算法。该算法依赖于这样的假设,即无雾图像的颜色由几百种不同的颜色很好地近似,这些颜色在RGB空间中形成紧密的簇。我们的关键观察是,在一个给定的集群中的像素往往是非本地的,即,它们分布在整个图像平面,并位于不同的距离从相机。

2023-09-21 14:15:07 944 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除