CenterNet-TF2 开源项目使用教程
1. 项目介绍
CenterNet-TF2 是一个基于 TensorFlow 2 实现的 CenterNet 目标检测模型。CenterNet 是一种将目标检测任务视为关键点估计问题的方法,通过预测目标的中心点和尺寸来实现目标检测。该项目提供了完整的源码,支持自定义数据集的训练和预测。
2. 项目快速启动
2.1 环境准备
确保你的环境中安装了以下依赖:
tensorflow-gpu==2.2.0
opencv-python>=3.4.0
2.2 下载项目
git clone https://github.com/bubbliiiing/centernet-tf2.git
cd centernet-tf2
2.3 数据集准备
使用 VOC 格式数据集进行训练。下载 VOC 数据集并解压到项目根目录:
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
2.4 数据集处理
生成训练和验证集的 txt 文件:
python voc_annotation.py
2.5 模型训练
开始训练模型:
python train.py
2.6 模型预测
修改 centernet.py
中的 model_path
和 classes_path
,然后运行预测脚本:
python predict.py
3. 应用案例和最佳实践
3.1 自定义数据集训练
- 数据集准备:将标签文件放在
VOCdevkit/VOC2007/Annotation
中,图片文件放在VOCdevkit/VOC2007/JPEGImages
中。 - 数据集处理:运行
voc_annotation.py
生成训练和验证集的 txt 文件。 - 模型训练:修改
train.py
中的classes_path
,指向自定义的类别文件,然后开始训练。
3.2 模型评估
使用 get_map.py
进行模型评估:
python get_map.py
4. 典型生态项目
- TensorFlow 2: 该项目基于 TensorFlow 2 实现,TensorFlow 2 是一个广泛使用的深度学习框架。
- COCO API: 用于评估模型在 COCO 数据集上的性能。
- OpenCV: 用于图像处理和可视化。
通过以上步骤,你可以快速上手 CenterNet-TF2 项目,并进行自定义数据集的训练和预测。