CenterNet-TF2 开源项目使用教程

CenterNet-TF2 开源项目使用教程

centernet-tf2 这是一个centernet-tf2的源码,可以用于训练自己的模型。 centernet-tf2 项目地址: https://gitcode.com/gh_mirrors/ce/centernet-tf2

1. 项目介绍

CenterNet-TF2 是一个基于 TensorFlow 2 实现的 CenterNet 目标检测模型。CenterNet 是一种将目标检测任务视为关键点估计问题的方法,通过预测目标的中心点和尺寸来实现目标检测。该项目提供了完整的源码,支持自定义数据集的训练和预测。

2. 项目快速启动

2.1 环境准备

确保你的环境中安装了以下依赖:

tensorflow-gpu==2.2.0
opencv-python>=3.4.0

2.2 下载项目

git clone https://github.com/bubbliiiing/centernet-tf2.git
cd centernet-tf2

2.3 数据集准备

使用 VOC 格式数据集进行训练。下载 VOC 数据集并解压到项目根目录:

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtrainval_06-Nov-2007.tar

2.4 数据集处理

生成训练和验证集的 txt 文件:

python voc_annotation.py

2.5 模型训练

开始训练模型:

python train.py

2.6 模型预测

修改 centernet.py 中的 model_pathclasses_path,然后运行预测脚本:

python predict.py

3. 应用案例和最佳实践

3.1 自定义数据集训练

  1. 数据集准备:将标签文件放在 VOCdevkit/VOC2007/Annotation 中,图片文件放在 VOCdevkit/VOC2007/JPEGImages 中。
  2. 数据集处理:运行 voc_annotation.py 生成训练和验证集的 txt 文件。
  3. 模型训练:修改 train.py 中的 classes_path,指向自定义的类别文件,然后开始训练。

3.2 模型评估

使用 get_map.py 进行模型评估:

python get_map.py

4. 典型生态项目

  • TensorFlow 2: 该项目基于 TensorFlow 2 实现,TensorFlow 2 是一个广泛使用的深度学习框架。
  • COCO API: 用于评估模型在 COCO 数据集上的性能。
  • OpenCV: 用于图像处理和可视化。

通过以上步骤,你可以快速上手 CenterNet-TF2 项目,并进行自定义数据集的训练和预测。

centernet-tf2 这是一个centernet-tf2的源码,可以用于训练自己的模型。 centernet-tf2 项目地址: https://gitcode.com/gh_mirrors/ce/centernet-tf2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏真权

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值