Tiny CUDA NN 使用指南

Tiny CUDA NN 使用指南

tiny-cuda-nn Lightning fast C++/CUDA neural network framework tiny-cuda-nn 项目地址: https://gitcode.com/gh_mirrors/ti/tiny-cuda-nn

1. 目录结构及介绍

Tiny CUDA NN 是一个轻量级、高性能的 C++/CUDA 深度学习框架,专为快速训练和查询神经网络设计。以下是该框架的基本目录结构及其简要说明:

NVlabs/tiny-cuda-nn
│
├── benchmarks          # 性能基准测试代码
├── bindings             # 包含PyTorch绑定的源码
├── citiation.cff       # 引用信息文件
├── CMakeLists.txt      # CMake构建配置文件
├── common.h            # 公共头文件,包含基础类型和函数
├── data                 # 示例数据和配置文件
├── dependencies        # 外部依赖(如果有)
├── DOCUMENTATION.md    # 技术文档
├── include              # 核心库的头文件
│   └── tiny-cuda-nn     # 主API定义
├── LICENSE.txt          # 许可证文件
├── README.md            # 项目简介
├── samplers             # 样本生成相关代码
├── scripts              # 构建脚本和其他辅助脚本
└── src                  # 源代码,包括核心网络实现
    ├── cutlass_mlp.cu   # 基于CUTLASS的MLP实现
    ├── fully_fused_mlp.cu # 高性能融合MLP实现
    └── ...               # 其他组件和网络层实现

2. 启动文件介绍

在Tiny CUDA NN中,并没有明确的“启动”文件如main.cpp这样的入口点提供给最终用户,因为这个库是作为框架使用的,需要开发者自己整合到他们的项目中。然而,对于示例应用,可以查看samples/目录下的程序,比如mlp_learning_an_image.cpp,这将展示如何配置和训练一个简单的神经网络。

若要启动性能测试或特定的应用实例,通常从命令行通过CMake构建后的可执行文件进行,具体命令需参考每个样例中的构建和运行说明。

3. 项目的配置文件介绍

配置文件主要以JSON格式出现,用于指定模型架构、优化器、损失函数等关键参数。例如,在上述项目中,你可以观察到一个典型的配置文件可能看起来像这样:

{
    "loss": [
        {
            "otype": "L2"
        }
    ],
    "optimizer": [
        {
            "otype": "Adam",
            "learning_rate": 1e-3
        }
    ],
    "encoding": [
        {
            "otype": "HashGrid",
            "n_levels": 16,
            "n_features_per_level": 2,
            "log2_hashmap_size": 19,
            "base_resolution": 16,
            "per_level_scale": 2.0
        }
    ],
    "network": [
        {
            "otype": "FullyFusedMLP",
            "activation": "ReLU",
            "output_activation": "None",
            "n_neurons": 64,
            "n_hidden_layers": 2
        }
    ]
}
  • loss: 定义所使用的损失函数类型。
  • optimizer: 描述优化算法及其参数,如Adam的学习率。
  • encoding: 输入编码方式配置,这里采用了哈希网格编码。
  • network: 网络结构配置,包括所选网络类型(如完全融合的多层感知器)、激活函数等。

开发者需要根据自己的需求修改这些配置文件来定制模型,然后通过API调用create_from_config()来创建相应的模型实例。


以上就是基于Tiny CUDA NN项目的简单指导。实际开发中,您还需深入阅读文档和源代码,以充分利用其提供的功能特性。

tiny-cuda-nn Lightning fast C++/CUDA neural network framework tiny-cuda-nn 项目地址: https://gitcode.com/gh_mirrors/ti/tiny-cuda-nn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞿凌骊Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值