Bayesian-Analysis-with-Python-第二版教程

Bayesian-Analysis-with-Python-第二版教程

Bayesian-Analysis-with-Python-Second-Edition Bayesian Analysis with Python - Second Edition, published by Packt Bayesian-Analysis-with-Python-Second-Edition 项目地址: https://gitcode.com/gh_mirrors/ba/Bayesian-Analysis-with-Python-Second-Edition

1. 项目介绍

项目概述

Bayesian-Analysis-with-Python 是由 Packt Publishing 出版的《Bayesian Analysis with Python - Second Edition》一书的配套代码库。该书旨在介绍贝叶斯分析的主要概念及其在 Python 中的实际应用。通过使用 PyMC3 和 ArviZ 这两个先进的概率编程库,读者可以学习如何构建和分析概率模型。

主要内容

  • PyMC3: 一个用于构建概率模型的 Python 库。
  • ArviZ: 一个用于探索性分析贝叶斯模型的库。
  • 贝叶斯分析: 介绍贝叶斯统计的基本概念和应用。

适用人群

  • 学生、数据科学家、研究人员或开发者,希望开始学习贝叶斯数据分析和概率编程。
  • 不需要先前的统计知识,但需要一定的 Python 和 NumPy 使用经验。

2. 项目快速启动

环境准备

确保你已经安装了以下软件和库:

  • IPython 7.0.1
  • Jupyter 1.0 (或 Jupyter-Lab 0.35)
  • NumPy 1.14.2
  • SciPy 1.1.0
  • Pandas 0.23.4
  • Matplotlib 3.0.2
  • Seaborn 0.9.0
  • ArviZ 0.3.1
  • PyMC3 3.6

安装步骤

  1. 克隆项目仓库:
    git clone https://github.com/PacktPublishing/Bayesian-Analysis-with-Python-Second-Edition.git
    
  2. 进入项目目录:
    cd Bayesian-Analysis-with-Python-Second-Edition
    
  3. 安装依赖:
    pip install -r requirements.txt
    

快速启动代码示例

以下是一个简单的贝叶斯模型构建示例:

import pymc3 as pm
import numpy as np

# 生成一些模拟数据
data = np.random.binomial(n=1, p=0.7, size=100)

# 构建贝叶斯模型
with pm.Model() as our_first_model:
    θ = pm.Beta('θ', alpha=1, beta=1)
    y = pm.Bernoulli('y', p=θ, observed=data)
    trace = pm.sample(1000, random_seed=123)

# 查看采样结果
pm.plot_posterior(trace)

3. 应用案例和最佳实践

应用案例

  • 医疗数据分析: 使用贝叶斯模型分析患者的治疗效果。
  • 金融风险评估: 通过贝叶斯方法评估投资组合的风险。
  • 市场营销: 分析广告效果并预测市场趋势。

最佳实践

  • 模型验证: 使用 ArviZ 库进行模型验证和诊断。
  • 超参数调优: 通过贝叶斯优化方法调整模型超参数。
  • 模型扩展: 逐步扩展模型以适应更复杂的数据分析需求。

4. 典型生态项目

PyMC3

PyMC3 是一个用于概率编程的 Python 库,支持贝叶斯统计和概率模型的构建。

ArviZ

ArviZ 是一个用于探索性分析贝叶斯模型的库,提供了丰富的可视化和诊断工具。

NumPy 和 SciPy

NumPy 和 SciPy 是 Python 科学计算的基础库,提供了大量的数学和统计函数。

Matplotlib 和 Seaborn

Matplotlib 和 Seaborn 是用于数据可视化的 Python 库,帮助用户更好地理解和展示数据。

通过这些生态项目的结合使用,可以构建强大的贝叶斯分析工具链,满足各种数据分析需求。

Bayesian-Analysis-with-Python-Second-Edition Bayesian Analysis with Python - Second Edition, published by Packt Bayesian-Analysis-with-Python-Second-Edition 项目地址: https://gitcode.com/gh_mirrors/ba/Bayesian-Analysis-with-Python-Second-Edition

HAL(Hardware Abstraction Layer,硬件抽象层)是STM32CubeMX的一部分,它提供了一种标准化的方式来访问STM32微控制器的各种功能,包括读写内部。在STM32F4系列中,内部Flash通常用于存储程序代码、配置数据等。 以下是使用STM32CubeMXHAL通过代码来操作内部Flash的基本步骤: 1. **初始化**: 首先,在你的C代码中,需要包含相关的HAL头文件,并初始化HAL,例如 `stm32f4xx_hal_flash.h` 和 `stm32f4xx_hal_flash_ex.h`。 ```c #include "stm32f4xx_hal_flash.h" ... HAL_Init(); FLASH年由HAL_FLASH_Init()函数初始化; ``` 2. **选择Flash分区**: STM32F4有多种Flash分区,如Program Flash、Option Bytes等。你需要明确你要操作的是哪一块分区,比如使用`FLASH分区管理结构体`,如`FLASH分区结构体` (FLASH分区结构体)。 ```c FLASH分区_t flash分区; flash分区.Address = FLASH_REGION_1; // 设置分区地址 ``` 3. **擦除**: 使用`HAL_FLASH erased_ranges`函数选择要擦除的范围并执行擦除操作。 ```c FLASH_EraseOptionsTypeDef erase_options; erase_options.TypeOfOperation = FLASH_TYPEERASE; erase_options.EraseAllPages = ENABLE; HAL_FLASHEx_Erase(&flash分区, &erase_options); ``` 4. **编程**: 使用`HAL_FLASH_Program`函数将数据写入Flash。 ```c uint8_t data[] = {0x01, 0x02, 0x03}; // 数据字节数组 HAL_FLASH_Program(FLASH_WRITE, flash分区.Address, 0, sizeof(data), data); ``` 5. **等待操作完成**: 对于一些长时间的操作(如擦除),可能会有延时或确认请求,可以使用`HAL_Delay`等待或检查操作状态。 6. **处理异常**:记得捕获和处理可能出现的错误,比如`HAL_StatusTypeDef status = HAL_FLASHEx_WaitForLastOperationUntilEnd()`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惠悦颖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值