开源项目 instance-segmentation-pytorch
使用教程
本文档基于开源项目 Wizaron/instance-segmentation-pytorch 编写,旨在帮助用户了解项目的目录结构、启动文件和配置文件。
1. 项目的目录结构及介绍
项目的目录结构如下:
instance-segmentation-pytorch/
├── data/
├── models/
├── outputs/
├── samples/
├── .deepsource.toml
├── .gitignore
├── LICENSE
├── README.md
data/
: 存放训练和测试数据集的目录。models/
: 存放模型定义和训练脚本的目录。outputs/
: 存放训练输出结果的目录。samples/
: 存放示例数据和代码的目录。.deepsource.toml
: DeepSource 配置文件。.gitignore
: Git 忽略文件配置。LICENSE
: 项目许可证文件。README.md
: 项目说明文档。
2. 项目的启动文件介绍
项目的启动文件通常位于 models/
目录下,具体文件名可能因版本更新而有所不同。以下是一个典型的启动文件示例:
# models/train.py
import torch
from models.model import InstanceSegmentationModel
def main():
# 加载配置
config = load_config('config.yaml')
# 初始化模型
model = InstanceSegmentationModel(config)
# 训练模型
model.train()
if __name__ == "__main__":
main()
train.py
: 主训练脚本,负责加载配置、初始化模型并开始训练。
3. 项目的配置文件介绍
项目的配置文件通常是一个 YAML 文件,位于项目根目录下。以下是一个典型的配置文件示例:
# config.yaml
model:
name: "InstanceSegmentationModel"
input_size: 512
num_classes: 21
train:
batch_size: 8
learning_rate: 0.001
epochs: 100
data:
train_path: "data/train"
val_path: "data/val"
model
: 模型相关配置,包括模型名称、输入大小和类别数。train
: 训练相关配置,包括批次大小、学习率和训练轮数。data
: 数据集路径配置,包括训练集和验证集路径。
通过以上内容,用户可以快速了解并开始使用 instance-segmentation-pytorch
项目。