开源项目安装与配置指南:Profanity过滤器

开源项目安装与配置指南:Profanity过滤器

profanity The world's largest profanity list. profanity 项目地址: https://gitcode.com/gh_mirrors/prof/profanity

1. 项目基础介绍

Profanity是一个用于检测和过滤不当、冒犯性或敏感词汇的开源项目。它可以应用于多种场景,如聊天应用、社交媒体平台等,以确保沟通环境的安全和友好。该项目主要使用Python编程语言开发。

2. 项目使用的关键技术和框架

  • Python:项目的主要编程语言,用于实现核心功能。
  • 正则表达式:用于匹配和替换不当词汇。
  • 自然语言处理:用于识别和过滤语境中的敏感内容。

3. 项目安装和配置的准备工作及详细步骤

准备工作

  • 确保您的系统中已安装Python(推荐版本Python 3.x)。
  • 安装pip(Python的包管理器),用于安装项目所需的依赖。

安装步骤

  1. 克隆项目到本地

    打开命令行(或终端),运行以下命令克隆项目:

    git clone https://github.com/surge-ai/profanity.git
    
  2. 进入项目目录

    克隆完成后,进入项目目录:

    cd profanity
    
  3. 安装依赖

    项目可能需要一些外部库,使用pip安装这些依赖:

    pip install -r requirements.txt
    

    如果您使用的是Python 3,可能需要使用pip3代替pip

  4. 运行示例代码

    为了验证安装是否成功,可以运行项目中的示例代码。例如,运行以下命令运行一个简单的过滤测试:

    python example.py
    

    如果一切正常,您应该会看到一些不当词汇被成功过滤。

  5. 自定义配置

    根据您的需求,您可能需要修改项目中的配置文件或代码,以适应特定的过滤规则或词汇库。

至此,您已经成功安装并配置了Profanity项目。您可以根据自己的需求进一步开发和定制该项目。

profanity The world's largest profanity list. profanity 项目地址: https://gitcode.com/gh_mirrors/prof/profanity

基于Swin TransformerASPP模块的图像分类系统设计实现 本文介绍了一种结合Swin Transformer空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚榕芯Noelle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值