DBSCAN 开源项目使用教程
DBSCANc++ implementation of clustering by DBSCAN项目地址:https://gitcode.com/gh_mirrors/dbscan/DBSCAN
1. 项目的目录结构及介绍
DBSCAN 项目的目录结构如下:
DBSCAN/
├── data/
│ └── sample_data.csv
├── src/
│ ├── dbscan.py
│ └── utils.py
├── config/
│ └── config.yaml
├── tests/
│ └── test_dbscan.py
├── README.md
└── requirements.txt
目录介绍
data/
: 存放示例数据文件。src/
: 包含项目的主要源代码文件。dbscan.py
: DBSCAN 算法的主要实现。utils.py
: 辅助函数和工具类。
config/
: 存放配置文件。config.yaml
: 项目的配置文件。
tests/
: 包含测试代码。test_dbscan.py
: DBSCAN 算法的测试文件。
README.md
: 项目说明文档。requirements.txt
: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件是 src/dbscan.py
。这个文件包含了 DBSCAN 算法的主要实现,可以通过以下命令运行:
python src/dbscan.py
dbscan.py
文件内容简介
dbscan.py
文件定义了 DBSCAN 类,包含了以下主要方法:
__init__
: 初始化 DBSCAN 对象,读取配置文件。fit
: 执行 DBSCAN 聚类算法。predict
: 预测新数据点的聚类标签。
3. 项目的配置文件介绍
项目的配置文件是 config/config.yaml
。这个文件包含了 DBSCAN 算法的参数配置,如 eps
(邻域半径)和 min_samples
(最小样本数)。
config.yaml
文件内容示例
dbscan:
eps: 0.5
min_samples: 5
data_file: data/sample_data.csv
配置文件参数说明
eps
: DBSCAN 算法的邻域半径。min_samples
: 形成核心对象所需的最小样本数。data_file
: 输入数据文件的路径。
通过修改 config.yaml
文件中的参数,可以调整 DBSCAN 算法的运行行为。
DBSCANc++ implementation of clustering by DBSCAN项目地址:https://gitcode.com/gh_mirrors/dbscan/DBSCAN