PyTorch Elastic 项目教程
elastic PyTorch elastic training 项目地址: https://gitcode.com/gh_mirrors/ela/elastic
1. 项目的目录结构及介绍
PyTorch Elastic 项目的目录结构如下:
pytorch-elastic/
├── README.md
├── setup.py
├── pytorch_elastic/
│ ├── __init__.py
│ ├── agent.py
│ ├── config.py
│ ├── launcher.py
│ ├── utils.py
│ └── ...
├── tests/
│ ├── test_agent.py
│ ├── test_config.py
│ └── ...
└── docs/
├── index.md
├── installation.md
└── ...
目录结构介绍
- README.md: 项目的主文档,包含项目的概述、安装说明和基本使用指南。
- setup.py: 项目的安装脚本,用于安装项目所需的依赖。
- pytorch_elastic/: 项目的主要代码目录,包含所有核心功能的实现。
- init.py: 初始化文件,用于导入模块。
- agent.py: 定义了 Elastic Agent,用于管理和监控任务。
- config.py: 配置文件管理模块,用于加载和解析配置文件。
- launcher.py: 启动器模块,用于启动和管理分布式任务。
- utils.py: 工具函数模块,包含一些通用的辅助函数。
- tests/: 测试代码目录,包含项目的单元测试和集成测试。
- docs/: 文档目录,包含项目的详细文档和使用指南。
2. 项目的启动文件介绍
项目的启动文件是 pytorch_elastic/launcher.py
。该文件负责启动和管理分布式任务。
启动文件介绍
- launcher.py:
- main(): 主函数,负责解析命令行参数并启动任务。
- start_task(): 启动任务的函数,负责初始化任务配置并启动任务。
- monitor_task(): 监控任务的函数,负责监控任务的运行状态并处理异常。
使用示例
python pytorch_elastic/launcher.py --config config.yaml
3. 项目的配置文件介绍
项目的配置文件通常是一个 YAML 文件,位于项目的根目录或用户指定的路径。配置文件用于定义任务的参数和环境配置。
配置文件示例
# config.yaml
task:
name: "distributed_training"
nodes: 4
batch_size: 32
learning_rate: 0.001
environment:
python_path: "/usr/bin/python3"
cuda_visible_devices: "0,1"
配置文件介绍
- task: 任务配置部分,定义任务的名称、节点数量、批量大小和学习率等参数。
- environment: 环境配置部分,定义任务运行的环境参数,如 Python 路径和可见的 CUDA 设备。
通过以上配置文件,用户可以灵活地配置和管理分布式任务的运行环境。
elastic PyTorch elastic training 项目地址: https://gitcode.com/gh_mirrors/ela/elastic