PyExPool 开源项目教程

PyExPool 开源项目教程

PyExPool Python Multi-Process Execution Pool: concurrent asynchronous execution pool with custom resource constraints (memory, timeouts, affinity, CPU cores and caching), load balancing and profiling capabilities of the external apps on NUMA architecture PyExPool 项目地址: https://gitcode.com/gh_mirrors/py/PyExPool

1. 项目介绍

PyExPool 是一个轻量级的多进程执行池,具有负载均衡和可定制的资源消耗约束功能。它支持并发异步执行,并提供了自定义资源约束(如内存、超时、亲和性和CPU核心)、负载均衡和外部应用程序在NUMA架构上的分析能力。PyExPool 主要用于在受限计算资源上进行高负载的多进程执行活动,适用于基准测试或需要大量并行执行的应用场景。

2. 项目快速启动

安装

首先,确保你已经安装了 Python 环境。然后,你可以通过以下命令安装 PyExPool:

pip install pyexpool

快速启动示例

以下是一个简单的示例,展示如何使用 PyExPool 执行并发任务:

from mpepool import ExecPool

# 定义一个简单的任务函数
def my_task(task_id):
    print(f"Task {task_id} is running")
    return task_id

# 创建执行池
pool = ExecPool(max_workers=4)

# 提交任务
results = []
for i in range(10):
    results.append(pool.submit(my_task, i))

# 等待所有任务完成
pool.shutdown()

# 输出结果
for result in results:
    print(f"Task completed with result: {result.result()}")

3. 应用案例和最佳实践

应用案例

PyExPool 适用于以下场景:

  • 基准测试:在受限资源上进行并发执行的基准测试。
  • 高负载任务:处理大量并发任务,如数据处理、模拟计算等。

最佳实践

  • 资源约束:根据任务需求设置合适的内存、超时和CPU核心约束。
  • 负载均衡:启用负载均衡以优化资源使用,特别是在内存受限的环境中。
  • 回调函数:使用 onstartondone 回调函数来监控任务执行状态。

4. 典型生态项目

PyExPool 可以与其他开源项目结合使用,以增强其功能:

  • Pebble:用于并发执行Python函数的库,适合不需要外部模块的场景。
  • Joblib:提供透明的并行计算功能,适用于需要简单并行化的任务。
  • Celery:分布式任务队列,适用于需要高级监控和报告功能的场景。
  • Dask:全面的并行计算库,适用于复杂的并行计算任务。
  • GNU Parallel:用于并行执行Shell脚本的工具。

通过结合这些项目,可以进一步扩展 PyExPool 的功能,满足更多复杂的应用需求。

PyExPool Python Multi-Process Execution Pool: concurrent asynchronous execution pool with custom resource constraints (memory, timeouts, affinity, CPU cores and caching), load balancing and profiling capabilities of the external apps on NUMA architecture PyExPool 项目地址: https://gitcode.com/gh_mirrors/py/PyExPool

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲍诚寒Yolanda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值