基于d2l-ai项目的Kaggle房价预测实战指南

基于d2l-ai项目的Kaggle房价预测实战指南

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

本文将通过d2l-ai项目中的房价预测案例,详细介绍如何使用深度学习技术解决实际问题。我们将从数据预处理开始,逐步构建模型,最终在Kaggle竞赛中提交预测结果。

数据集介绍

我们使用的数据集来自Kaggle房价预测竞赛,包含2006-2010年间美国爱荷华州埃姆斯市的房屋销售数据。这个数据集比著名的波士顿房价数据集更大,包含1460个训练样本和1459个测试样本,每个样本有80个特征。

数据预处理

数据预处理是机器学习项目中最关键的步骤之一。我们的数据集包含多种类型的数据:

  1. 数值型特征:如建造年份、地下室面积等
  2. 类别型特征:如街道类型、屋顶类型等
  3. 缺失值:部分特征存在缺失情况

数值型特征处理

对于数值型特征,我们采取以下步骤:

  1. 标准化处理:将特征转换为均值为0,标准差为1的分布 $$x \leftarrow \frac{x - \mu}{\sigma}$$

  2. 缺失值填充:用该特征的均值填充缺失值

标准化处理有助于模型训练时的数值稳定性,使不同尺度的特征具有可比性。

类别型特征处理

对于类别型特征,我们使用独热编码(one-hot encoding)进行转换。例如:

  • 原始特征"MSZoning"可能取值"RL"和"RM"
  • 转换后生成两个新特征"MSZoning_RL"和"MSZoning_RM"
  • 如果原始值为"RL",则"MSZoning_RL"=1,"MSZoning_RM"=0

经过预处理后,特征数量从79个增加到331个。

模型构建与训练

损失函数选择

在房价预测问题中,我们更关心相对误差而非绝对误差。因此采用对数均方根误差(RMSLE)作为评估指标:

$$\sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log y_i -\log \hat{y}_i\right)^2}$$

这种度量方式能更好地反映预测的相对准确性。

K折交叉验证

为了评估模型性能并选择最佳超参数,我们使用K折交叉验证:

  1. 将训练数据分成K份
  2. 每次用K-1份训练,剩余1份验证
  3. 重复K次,取平均验证误差

这种方法能更可靠地评估模型性能,减少数据划分带来的偶然性。

线性回归模型

我们首先构建一个简单的线性回归模型作为基线。虽然线性模型不太可能在竞赛中获胜,但它能帮助我们:

  1. 验证数据预处理是否正确
  2. 建立性能基准
  3. 理解问题的难度级别

模型优化方向

在基础模型之上,可以考虑以下优化方向:

  1. 特征工程:创建更有意义的特征组合
  2. 模型复杂度:尝试更复杂的神经网络结构
  3. 正则化:使用权重衰减、dropout等技术防止过拟合
  4. 集成方法:组合多个模型的预测结果

提交Kaggle预测

完成模型训练后,我们需要:

  1. 对测试集进行与训练集相同的预处理
  2. 使用训练好的模型进行预测
  3. 将预测结果转换为要求格式
  4. 提交到Kaggle平台评估

总结

通过本案例,我们学习了完整的机器学习项目流程:

  1. 数据获取与探索
  2. 数据预处理与特征工程
  3. 模型选择与训练
  4. 模型评估与优化
  5. 结果提交与验证

这些步骤构成了解决实际机器学习问题的基本框架,可以应用于各种预测任务。

常见问题与思考

  1. 缺失值处理:均值填充并非总是最佳选择,需要考虑数据缺失的原因
  2. 特征标准化:不标准化可能导致数值不稳定和训练困难
  3. 模型选择:简单模型作为基准,复杂模型需谨慎验证
  4. 评估指标:选择与业务目标一致的评估方式

通过不断迭代优化这些环节,我们可以逐步提升模型性能,获得更好的预测结果。

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

娄筝逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值