PiBar for Pi-hole 管理指南

PiBar for Pi-hole 管理指南

pibarPiBar for Pi-hole - Manage your Pi-hole(s) from your macOS menu bar!项目地址:https://gitcode.com/gh_mirrors/pi/pibar

1. 项目目录结构及介绍

PiBar 是一个专为管理 Pi-hole 设计的 macOS 应用程序,其项目结构组织如下:

.
├── PiBar             # 主项目源码目录
├── Pods               # CocoaPods 依赖库存放目录
│   ├── ...
├── PiBar.xcodeproj    # Xcode 工程文件
├── PiBar.xcworkspace  # Xcode 工作空间文件
├── Cartfile           # 包含外部依赖的描述文件
├── Cartfile.resolved  # 解析后的依赖版本文件
├── gitignore          # Git 忽略文件列表
├── swift-version      # 指定使用的 Swift 语言版本
├── swiftlint.yml      # SwiftLint 配置文件,用于代码风格检查
├── LICENSE            # 许可证文件,采用 MIT License
├── Podfile            # CocoaPods 的配置文件
├── Podfile.lock       # 锁定当前所有依赖的具体版本
├── README.md          # 项目的主要说明文档
  • PiBar 目录下包含应用的主要业务逻辑和界面相关的Swift源代码。
  • Pods 目录存储通过CocoaPods管理的第三方依赖库。
  • PiBar.xcodeprojPiBar.xcworkspace 分别是Xcode项目和工作区文件,后者集成了CocoaPods的依赖。
  • CartfileCartfile.resolved 管理非CocoaPods的依赖。
  • swift-version 明确指出项目使用的Swift语言版本。
  • swiftlint.yml 定义代码规范设置。
  • LICENSE 文件声明软件授权方式。
  • PodfilePodfile.lock 确保开发环境的一致性。

2. 项目的启动文件介绍

虽然具体到哪个文件直接定义了“启动”行为在iOS或macOS的项目中不如Android中的“MainActivity”直观,但对于PiBar这样的macOS应用,通常启动流程从AppDelegate.swift开始。这个文件位于PiBar目录下,负责应用生命周期的管理,如启动、进入后台、前台等事件处理。它至少包含苹果规定的UIApplicationDelegate协议的方法,比如application(_:didFinishLaunchingWithOptions:),这是应用启动时首先调用的方法。

3. 项目的配置文件介绍

在PiBar项目中,配置主要涉及与Pi-hole交互的设置。这些设置更多地体现在应用内部逻辑和用户提供的信息中,而非传统意义上的独立配置文件。然而,用户在使用应用时,需进行一些基础配置,这通过应用的界面完成,而非直接编辑文件。

用户配置体验通过应用内的“Preferences”来实现,允许用户添加、测试以及调整他们的Pi-hole实例详情。对于开发者来说,如果涉及到外部配置,可能需要查看代码中如何读取和处理环境变量或者用户偏好设置(通常是利用UserDefaults或自定义的配置类)。但直接在仓库中没有明显的用户直接编辑的配置文件。

简而言之,PiBar的设计侧重于提供直觉式的UI以指导用户配置,而开发者层面的配置细节则嵌入在代码结构中,尤其是初始化方法和网络请求部分。

pibarPiBar for Pi-hole - Manage your Pi-hole(s) from your macOS menu bar!项目地址:https://gitcode.com/gh_mirrors/pi/pibar

  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农彩媛Louise

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值