无人机视角语义分割数据集 Aeroscapes 使用指南
项目地址:https://gitcode.com/gh_mirrors/ae/aeroscapes
项目介绍
Aeroscapes 是一个专注于空中语义分割的数据集,它由一组从商业无人机上拍摄的图像组成,涵盖了从5到50米不等的高度范围。此数据集提供了3269张720p分辨率的图片以及相应的地面真实度(ground-truth)标记,涵盖11种不同的类别。通过Google Drive可以下载到该数据集。
目录结构:
aeroscapes/
JPEGImages/
3269 张RGB图像
SegmentationClass/
3269 张语义分割地面真实度掩码
Visualizations/
3269 张RGB可视化地面真实度
ImageSets/
包含用于训练的数据集划分文件
项目快速启动
数据准备
首先克隆或下载Aeroscapes数据集:
git clone https://github.com/ishann/aeroscapes.git
cd aeroscapes
确保已安装必要的依赖库:
pip install numpy scipy matplotlib scikit-image pillow
开始处理数据
假设你的工作目录已经设置好并且环境准备好,接下来我们可以通过以下命令来检查数据集是否完整:
import os
# 验证JPEGImages中的所有图像都有对应的mask
image_dir = 'aeroscapes/JPEGImages'
mask_dir = 'aeroscapes/SegmentationClass'
images = set([f.split('.')[0] for f in os.listdir(image_dir)])
masks = set([f.split('.')[0] for f in os.listdir(mask_dir)])
# 打印缺失的项
missing = images.symmetric_difference(masks)
if missing:
print(f"存在缺失数据: {missing}")
else:
print("数据验证成功!")
应用案例和最佳实践
训练模型
以PyTorch为例,我们可以使用深度学习框架搭建并训练模型对Aeroscapes进行语义分割。这里简要描述训练流程:
加载数据
from torchvision import transforms
from torch.utils.data import DataLoader
from aeroscapes_dataset import AeroscapesDataset # 假设你有一个自定义数据加载器
transform = transforms.Compose([
transforms.ToTensor(),
])
dataset = AeroscapesDataset(transform=transform)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
for i_batch, sample_batched in enumerate(dataloader):
inputs, labels = sample_batched['image'], sample_batched['label']
# 在此处插入训练步骤
最佳实践
在处理具有高维度输入的空间密集型任务时,建议使用深度卷积神经网络(DCNN)如U-Net或DeepLab系列。此外,为了加速收敛,预训练权重通常是推荐的做法。
典型生态项目
SemanticSegmentationWithPyTorch: 此项目展示了如何利用PyTorch构建端到端的语义分割系统。它不仅包括了数据加载,而且还涉及到了如何利用预训练模型进行迁移学习。GitHub链接。
DroneViewSegmentation: 另一个基于无人机捕获数据的深度学习项目,专攻实时目标检测和语义分割,可用于多种无人机相关应用场景。GitHub链接
以上内容将帮助您更好地理解、处理并分析来自无人机的视觉信息,从而进行有效的语义分割研究与开发。
aeroscapes Aerial Semantic Segmentation Benchmark 项目地址: https://gitcode.com/gh_mirrors/ae/aeroscapes