UNETR 开源项目教程

UNETR 开源项目教程

UNETRUnofficial code base for UNETR: Transformers for 3D Medical Image Segmentation项目地址:https://gitcode.com/gh_mirrors/un/UNETR

1. 项目的目录结构及介绍

UNETR 项目的目录结构如下:

UNETR/
├── data/
│   └── README.md
├── models/
│   ├── __init__.py
│   ├── unetr.py
│   └── utils.py
├── scripts/
│   ├── train.py
│   └── evaluate.py
├── configs/
│   └── config.yaml
├── README.md
└── requirements.txt

目录结构介绍

  • data/: 存放数据集的目录。
  • models/: 包含模型的定义和相关工具函数。
    • unetr.py: 定义 UNETR 模型的主要文件。
    • utils.py: 包含一些辅助函数。
  • scripts/: 包含训练和评估脚本。
    • train.py: 用于训练模型的脚本。
    • evaluate.py: 用于评估模型的脚本。
  • configs/: 存放配置文件。
    • config.yaml: 项目的配置文件。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖的 Python 包列表。

2. 项目的启动文件介绍

项目的启动文件主要位于 scripts/ 目录下:

  • train.py: 这是训练模型的主要启动文件。它读取配置文件,加载数据,初始化模型,并开始训练过程。
  • evaluate.py: 这是评估模型的主要启动文件。它加载已训练的模型,读取测试数据,并进行评估。

使用方法

# 训练模型
python scripts/train.py --config configs/config.yaml

# 评估模型
python scripts/evaluate.py --config configs/config.yaml

3. 项目的配置文件介绍

配置文件位于 configs/ 目录下,名为 config.yaml。该文件包含了项目运行所需的各种配置参数。

配置文件内容示例

data:
  path: "data/"
  batch_size: 8

model:
  input_channels: 1
  output_channels: 1

training:
  epochs: 100
  learning_rate: 0.001

evaluation:
  metrics: ["accuracy", "f1_score"]

配置文件参数介绍

  • data: 数据相关配置。
    • path: 数据集路径。
    • batch_size: 批处理大小。
  • model: 模型相关配置。
    • input_channels: 输入通道数。
    • output_channels: 输出通道数。
  • training: 训练相关配置。
    • epochs: 训练轮数。
    • learning_rate: 学习率。
  • evaluation: 评估相关配置。
    • metrics: 评估指标列表。

通过修改 config.yaml 文件,可以调整项目的运行参数,以适应不同的需求和环境。

UNETRUnofficial code base for UNETR: Transformers for 3D Medical Image Segmentation项目地址:https://gitcode.com/gh_mirrors/un/UNETR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伍畅晗Praised

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值