UNETR 开源项目教程
1. 项目的目录结构及介绍
UNETR 项目的目录结构如下:
UNETR/
├── data/
│ └── README.md
├── models/
│ ├── __init__.py
│ ├── unetr.py
│ └── utils.py
├── scripts/
│ ├── train.py
│ └── evaluate.py
├── configs/
│ └── config.yaml
├── README.md
└── requirements.txt
目录结构介绍
- data/: 存放数据集的目录。
- models/: 包含模型的定义和相关工具函数。
unetr.py
: 定义 UNETR 模型的主要文件。utils.py
: 包含一些辅助函数。
- scripts/: 包含训练和评估脚本。
train.py
: 用于训练模型的脚本。evaluate.py
: 用于评估模型的脚本。
- configs/: 存放配置文件。
config.yaml
: 项目的配置文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录下:
- train.py: 这是训练模型的主要启动文件。它读取配置文件,加载数据,初始化模型,并开始训练过程。
- evaluate.py: 这是评估模型的主要启动文件。它加载已训练的模型,读取测试数据,并进行评估。
使用方法
# 训练模型
python scripts/train.py --config configs/config.yaml
# 评估模型
python scripts/evaluate.py --config configs/config.yaml
3. 项目的配置文件介绍
配置文件位于 configs/
目录下,名为 config.yaml
。该文件包含了项目运行所需的各种配置参数。
配置文件内容示例
data:
path: "data/"
batch_size: 8
model:
input_channels: 1
output_channels: 1
training:
epochs: 100
learning_rate: 0.001
evaluation:
metrics: ["accuracy", "f1_score"]
配置文件参数介绍
- data: 数据相关配置。
path
: 数据集路径。batch_size
: 批处理大小。
- model: 模型相关配置。
input_channels
: 输入通道数。output_channels
: 输出通道数。
- training: 训练相关配置。
epochs
: 训练轮数。learning_rate
: 学习率。
- evaluation: 评估相关配置。
metrics
: 评估指标列表。
通过修改 config.yaml
文件,可以调整项目的运行参数,以适应不同的需求和环境。