DeepStream-Yolo-Pose 项目教程

DeepStream-Yolo-Pose 项目教程

DeepStream-Yolo-PoseNVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 application for YOLO-Pose models项目地址:https://gitcode.com/gh_mirrors/de/DeepStream-Yolo-Pose

项目介绍

DeepStream-Yolo-Pose 是一个基于 NVIDIA DeepStream SDK 的开源项目,专门用于加速 YOLO-Pose 模型的推理。该项目结合了 DeepStream 和 TensorRT,提供了高效的姿态估计功能。YOLO-Pose 模型能够实时检测和估计人体的关键点,适用于视频分析和智能监控等多种应用场景。

项目快速启动

环境准备

在开始之前,请确保您的系统满足以下要求:

  • NVIDIA DeepStream SDK
  • TensorRT 版本:8.5.2
  • GPU 类型:Jetson AGX Xavier / AGX Orin
  • CUDA 版本:11.4.315
  • cuDNN 版本:8.6.0.166
  • 操作系统:Ubuntu 20.04
  • Python 版本:3.8.10

安装步骤

  1. 克隆仓库

    git clone https://github.com/marcoslucianops/DeepStream-Yolo-Pose.git
    cd DeepStream-Yolo-Pose
    
  2. 运行示例应用

    python3 deepstream_YOLOv8-Pose_rtsp.py \
    -i rtsp://sample_1.mp4 \
    rtsp://sample_2.mp4 \
    rtsp://sample_N.mp4
    

    或者使用本地文件输入:

    python3 deepstream_YOLOv8-Pose_rtsp.py \
    -i file:///home/ubuntu/video1.mp4
    

应用案例和最佳实践

智能监控

DeepStream-Yolo-Pose 可以用于智能监控系统,实时检测和分析监控视频中的人体姿态。例如,在工厂环境中,可以监控工人的操作姿势,确保操作安全。

体育分析

在体育领域,该技术可以用于分析运动员的动作和姿态,帮助教练和运动员改进训练方法和技巧。

医疗康复

在医疗康复领域,DeepStream-Yolo-Pose 可以用于监测患者的康复进度,通过分析患者的动作和姿态,提供个性化的康复建议。

典型生态项目

NVIDIA DeepStream SDK

DeepStream SDK 是一个用于构建智能视频分析应用的平台,支持多种 AI 模型和视频处理功能。DeepStream-Yolo-Pose 项目充分利用了 DeepStream SDK 的高性能视频处理和推理能力。

TensorRT

TensorRT 是 NVIDIA 的高性能深度学习推理引擎,能够优化和加速深度学习模型的推理过程。DeepStream-Yolo-Pose 项目结合了 TensorRT,提供了高效的姿态估计功能。

YOLO-Pose

YOLO-Pose 是一个基于 YOLO 框架的姿态估计模型,能够实时检测和估计人体的关键点。DeepStream-Yolo-Pose 项目专门针对 YOLO-Pose 模型进行了优化和加速。

通过结合这些生态项目,DeepStream-Yolo-Pose 提供了一个强大的工具集,用于构建高性能的姿态估计应用。

DeepStream-Yolo-PoseNVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 application for YOLO-Pose models项目地址:https://gitcode.com/gh_mirrors/de/DeepStream-Yolo-Pose

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴才隽Tanya

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值