Easy Diffusion:一款功能丰富的稳定扩散Notebook
Easy Diffusion 是一个开源项目,旨在提供一个易于使用的一体化稳定扩散工具。该项目主要使用 Jupyter Notebook 和 Python 编程语言开发。
项目基础介绍
Easy Diffusion 是一个基于 Google Colab 的 Notebook,它集成了稳定扩散(Stable Diffusion)的多种功能。该项目旨在简化稳定扩散模型的使用过程,为用户提供一个全面的图像处理套件。它遵循 MIT 许可协议,任何人都可以自由使用和修改。
核心功能
- 文本到图像:利用稳定扩散模型,用户可以通过输入文本描述来生成相应的图像。
- 图像到图像:允许用户通过已有图像生成新的变体。
- 图像修复:提供稳定扩散的修复功能,用于修复图像中的损坏部分。
- NSFW 过滤:可选的 NSFW 过滤功能,可以模糊不适当的内容。
- 缓存管道:支持管道缓存到磁盘,加快不同类型管道之间的加载速度。
- 模型选择:用户可以选择预定义的模型或通过输入模型 ID 使用自定义模型。
- 稳定扩散概念支持:支持使用本地或远程初始化图像或蒙版图像。
- 批次处理:通过文本文件支持批处理初始化图像、蒙版或提示。
- 图像增强:包括图像放大、锐化、色差调整、中值滤波等图像处理功能。
最近更新的功能
- 递归进化:可以将扩散结果作为输入再次进行图像到图像的扩散,用于创建动画效果。
- 图像放大:增加了图像放大功能,包括将图像切割成小瓦片进行扩散,再组合成最终的高分辨率结果,适合在显存有限的情况下添加扩散细节。
- CLIP 询问:支持使用各种 CLIP 模型对扩散结果进行询问,也可以在不进行扩散的情况下询问批次图像。
Easy Diffusion 项目的维护者 WASasquatch(WAS#0263)不断添加新功能和改进,使其成为一个功能丰富的稳定扩散工具。