trt_yolo_video_pipeline:让视频流分析处理更高效

trt_yolo_video_pipeline:让视频流分析处理更高效

trt_yolo_video_pipeline TensorRT+YOLO系列的 多路 多卡 多实例 并行视频分析处理案例 trt_yolo_video_pipeline 项目地址: https://gitcode.com/gh_mirrors/tr/trt_yolo_video_pipeline

项目介绍

trt_yolo_video_pipeline 是一个基于TensorRT的高性能多路视频分析处理开源项目。它为开发者提供了一个完整的视频分析处理pipeline,包括视频拉流解码、TensorRT推理、编码以及推理结果输出等功能。项目支持yolo系列模型的TensorRT推理,并优化了多显卡多实例的负载调度,使得数据处理更加高效。

项目技术分析

trt_yolo_video_pipeline 项目采用了多种前沿技术,确保了视频流处理的高性能与高效率:

  • TensorRT推理引擎:使用TensorRT进行推理加速,能够显著提高模型在GPU上的运行速度。
  • 多显卡多实例调度:通过负载均衡,将任务分散到不同的显卡上,提高了系统资源的利用率。
  • NVIDIA硬件编解码:利用NVIDIA显卡的硬件编解码能力,大幅减轻CPU负担,提高处理效率。
  • 多格式支持:输入支持RTSP、RTMP、MP4等多种视频格式,输出支持RTSP、RTMP以及本地MP4录制。

项目及技术应用场景

trt_yolo_video_pipeline 的设计理念是为多种场景提供高效的视频分析处理方案,以下是一些典型的应用场景:

  • 实时目标检测:在视频监控、无人驾驶等领域,实现对运动目标的高效实时检测。
  • 视频内容分析:在媒体制作、网络安全等领域,进行视频内容的智能分析。
  • 智能交通系统:在交通监控系统中,实时检测车辆和行人,提供交通数据。

项目特点

高效的性能

项目充分利用TensorRT的高性能特性,结合GPU加速,实现了高效的模型推理和数据处理。通过多显卡多实例的负载调度,确保了系统的高吞吐量和低延迟。

易用的接口

trt_yolo_video_pipeline 提供了简洁易用的接口,用户只需简单的配置,即可实现从视频输入到推理处理再到视频输出的完整流程。

强大的功能模块

项目包含了多个功能节点,如FFmpegReadNode、ImageDrawNode、FFmpegPusherNode等,用户可以根据需求灵活组合这些节点,实现定制化的视频处理流程。

丰富的视频格式支持

项目支持多种视频格式的输入与输出,使得开发者可以轻松应对不同场景下的视频流处理需求。

硬件加速

通过利用NVIDIA显卡的硬件编解码能力,项目大幅提高了视频处理的效率,同时减轻了CPU的负担。

开源与社区支持

作为开源项目,trt_yolo_video_pipeline 拥有活跃的社区支持,用户可以在社区中获取帮助和贡献自己的代码。


总结而言,trt_yolo_video_pipeline 是一款功能强大、性能高效的视频分析处理工具,适用于多种复杂的视频流处理场景。其易用的接口和模块化的设计,使得开发者能够快速搭建自己的视频分析应用。如果你正在寻找一款高效的视频流处理解决方案,trt_yolo_video_pipeline 将是一个不错的选择。

trt_yolo_video_pipeline TensorRT+YOLO系列的 多路 多卡 多实例 并行视频分析处理案例 trt_yolo_video_pipeline 项目地址: https://gitcode.com/gh_mirrors/tr/trt_yolo_video_pipeline

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 使用TensorRT创建或实现YOLO模型的方法 #### 背景介绍 TensorRT 是 NVIDIA 提供的一个高性能深度学习推理优化器和运行时库,能够显著加速神经网络的推理过程。对于 YOLO(You Only Look Once)这类目标检测模型,通过 TensorRT 可以有效提升其推理速度并降低延迟。 以下是基于现有引用内容以及专业知识总结的实现方法: --- #### 方法概述 为了将 YOLO 模型与 TensorRT 结合使用,通常需要完成以下几个核心步骤:模型转换、引擎构建以及推理执行。 1. **模型转换** - 如果原始模型是以 PyTorch 的 `.pt` 文件形式保存,则需将其导出为 ONNX 格式[^2]。 ```python import torch model = torch.load('yolov5s.pt')['model'].float() # 加载模型 model.eval() input_size = (1, 3, 640, 640) # 输入尺寸 dummy_input = torch.randn(input_size) torch.onnx.export(model, dummy_input, 'yolov5s.onnx', opset_version=12) ``` - 对于 DarkNet 训练的 YOLO 模型,可能需要借助自定义 API 或第三方工具来生成兼容的中间表示[^1]。 2. **引擎构建** - 将 ONNX 模型进一步转化为 TensorRT 引擎文件(`.engine`)。可以通过 Python 绑定或者 C++ 接口完成此操作。 ```cpp // 创建解析器实例 nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger); nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger); // 解析ONNX模型 std::ifstream file("yolov5s.onnx", std::ios::binary | std::ios::ate); size_t fileSize = file.tellg(); file.seekg(0, std::ios::beg); std::vector<char> buffer(fileSize); file.read(buffer.data(), fileSize); bool success = parser->parseFromBuffer(buffer.data(), static_cast<int>(buffer.size())); // 构建引擎 nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network); ``` 3. **推理执行** - 利用 TensorRT 提供的 `ExecutionContext` 类对象加载已生成的引擎文件,并绑定输入/输出张量进行前向传播计算。 ```cpp void infer(nvinfer1::IExecutionContext& context, float* inputDataHost, float* outputDataHost, int batchSize) { const auto& bindings = context.getBindings(); // 获取绑定信息 CUDA_CHECK(cudaMemcpy(dInput, inputDataHost, batchSize * INPUT_SIZE * sizeof(float), cudaMemcpyHostToDevice)); context.enqueue(batchSize, &bindings[0], stream, nullptr); // 执行推理 CUDA_CHECK(cudaMemcpy(outputDataHost, dOutput, batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost)); } ``` --- #### 工程实践中的注意事项 - **依赖管理** 在实际开发过程中,确保正确配置环境变量及链接路径是非常重要的。例如,在 Windows 平台上设置附加库目录时应包含 TensorRT 和 OpenCV 的本地安装位置[^4];而在 Linux 下则可通过修改 `CMakeLists.txt` 来指定头文件与共享库的位置[^5]。 - **性能调优** TensorRT 支持多种精度模式(FP32、FP16 和 INT8),合理选择可以平衡准确率与效率之间的关系。此外还可以尝试启用动态批量大小功能以适应不同场景需求。 - **错误排查** 当遇到无法解释的行为时,请仔细检查日志输出并与官方文档对比分析原因所在。 --- ### 示例代码片段 以下是一个简单的端到端流程演示: ```cpp #include "NvInfer.h" #include <fstream> #include <iostream> using namespace nvinfer1; // 假设存在全局 logger 实现... void buildAndSaveEngine(const char* onnxFile, const char* engineFile) { IBuilder* builder = createInferBuilder(gLogger); INetworkDefinition* network = builder->createNetworkV2(0U); IParse r* parser = createParser(*network, gLogger); std::ifstream ifs(onnxFile, std::ios::binary); if (!ifs.good()) { throw std::runtime_error("Failed to read the .onnx file!"); } char buf[(size_t)ifs.tellg()]; ifs.seekg(0, std::ios::beg).read(buf, sizeof(buf)); if (!parser->parse((char*)buf, strlen(buf))) { for (int i = 0; i < parser->getNbErrors(); ++i) { std::cerr << parser->getError(i)->desc() << '\n'; } throw std::runtime_error("Parse failed."); } delete parser; ICudaEngine* engine = builder->buildCudaEngine(*network); serializeModel(engine, engineFile); } ``` --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

束慧可Melville

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值