YOLOv5 驾驶疲劳与危险行为检测教程

YOLOv5 驾驶疲劳与危险行为检测教程

Yolov5-driving-detection 疲劳检测-危险驾驶检测 Yolov5-driving-detection 项目地址: https://gitcode.com/gh_mirrors/yo/Yolov5-driving-detection

本教程将指导您了解并使用 YOLOv5-driving-detection 开源项目,该项目致力于通过改进的YOLOv5算法实现疲劳驾驶和危险驾驶行为的高效识别。

1. 项目目录结构及介绍

YOLOv5-driving-detection项目采用典型的深度学习项目布局,主要目录结构如下:

  • src: 包含核心源代码,如模型定义、数据预处理等。
  • weights: 存放训练好的模型权重文件。
  • data: 数据集相关的文件,包括标注文件、配置文件等。
  • .gitignore: Git忽略文件,指定不纳入版本控制的文件或文件夹。
  • LICENSE: 许可证文件,说明了项目使用的版权协议(GPL-3.0)。
  • README.md: 项目简介,可能包含了安装步骤和快速开始指南。
  • mydetect.py 或类似脚本: 用于执行实际检测的主程序文件。

请注意,具体目录结构可能会随着项目更新而变化。重要的是查看最新的README.md以获取最新信息。

2. 项目启动文件介绍

mydetect.py

这是项目的核心脚本之一,用于加载模型并进行实时或视频文件中的物体检测。该脚本通常会完成以下功能:

  • 加载预训练的YOLOv5模型。
  • 接受视频流(摄像头)或视频文件作为输入。
  • 应用模型对每一帧进行处理,识别出疲劳驾驶或其他危险行为的迹象。
  • 可视化检测结果并在屏幕上或者保存到新的视频文件中。

使用方法通常在README.md中有说明,涉及命令行参数,例如指定模型路径、输入视频或图片路径以及输出设置。

3. 项目的配置文件介绍

配置文件一般位于data目录下,比如对于数据集的配置可能会有dataset.yaml或类似的命名,它包含:

  • 类别名列表:定义所有要识别的目标类,如“driver_drowsy”,“dangerous_behavior”等。
  • 数据路径:包括训练图像和标签文件的位置。
  • 预处理设置:如图像尺寸调整、增强选项等。
  • 批处理大小工作数(worker number):用于训练过程的超参数。

对于运行时的特定配置,有时这些设置也可以在执行脚本时通过命令行参数动态传递。

由于开源项目可能频繁更新,强烈建议查阅项目仓库的最新文档以获得最准确的信息。此外,对于深入理解和定制项目,阅读源代码和注释也是必不可少的一部分。

Yolov5-driving-detection 疲劳检测-危险驾驶检测 Yolov5-driving-detection 项目地址: https://gitcode.com/gh_mirrors/yo/Yolov5-driving-detection

基于YOLOv9实现驾驶危险驾驶行为(吸烟、喝水、点头、打哈欠等)检测系统python源码+详细运行教 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸锬泽Jemima

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值