Chartify 开源项目教程

Chartify 开源项目教程

chartify📊 📈 📉 React.js plugin for building charts using CSS项目地址:https://gitcode.com/gh_mirrors/cha/chartify

项目介绍

Chartify 是一个 Python 库,旨在使数据科学家能够轻松创建图表。它基于 Bokeh 构建,提供了简洁的 API 和智能的默认样式,使得创建漂亮的图表变得非常简单。Chartify 支持一致的数据输入格式,减少了数据转换的时间,并且提供了灵活的定制选项。

项目快速启动

安装 Chartify

首先,通过 pip 安装 Chartify:

pip3 install chartify

安装 chromedriver(可选,用于 PNG 输出)

下载适用于您操作系统的 chromedriver 版本,并将其复制到 PATH 目录中:

# 下载 chromedriver
wget https://chromedriver.storage.googleapis.com/2.41/chromedriver_linux64.zip
unzip chromedriver_linux64.zip

# 复制到 PATH 目录
cp chromedriver /usr/local/bin/

快速启动示例

以下是一个简单的 Chartify 示例,展示如何创建一个条形图:

import chartify

# 创建 Chartify 图表对象
ch = chartify.Chart(blank_labels=True, x_axis_type='categorical')

# 数据
data = {
    'Fruit': ['Apple', 'Banana', 'Cherry'],
    'Count': [30, 40, 25]
}

# 绘制条形图
ch.plot.bar(
    data_frame=data,
    categorical_columns='Fruit',
    numeric_column='Count'
)

# 显示图表
ch.show('png')

应用案例和最佳实践

数据可视化

Chartify 可以帮助数据科学家快速将数据可视化,通过简单的 API 调用即可生成各种图表,如条形图、折线图、散点图等。

数据清洗

在 Chartify 中,可以直接在图表上选择数据点进行删除或更新,同时显示缺失值,保持数据的上下文。

统计和机器学习

Chartify 支持在图表上应用统计和机器学习算法,通过选择图表并执行相应的操作(如组合、分解、建模、转换),无需编写代码。

典型生态项目

Bokeh

Chartify 基于 Bokeh 构建,因此如果您需要更多的控制和定制选项,可以随时使用 Bokeh 的 API。

Pandas

Chartify 与 Pandas 数据框无缝集成,使得数据处理和图表生成更加高效。

Jupyter Notebook

Chartify 在 Jupyter Notebook 中表现出色,提供了交互式的数据可视化体验。

通过以上内容,您可以快速了解和使用 Chartify 开源项目,希望本教程对您有所帮助。

chartify📊 📈 📉 React.js plugin for building charts using CSS项目地址:https://gitcode.com/gh_mirrors/cha/chartify

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薛靓璐Gifford

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值