开源项目 make-sense 使用教程

开源项目 make-sense 使用教程

项目地址:https://gitcode.com/gh_mirrors/ma/make-sense

1. 项目的目录结构及介绍

make-sense 项目的目录结构如下:

make-sense/
├── assets/
├── components/
├── config/
├── hooks/
├── pages/
├── public/
├── services/
├── styles/
├── utils/
├── .gitignore
├── .prettierrc
├── package.json
├── README.md
└── tsconfig.json
  • assets/: 存放静态资源文件,如图片、字体等。
  • components/: 存放项目中的 React 组件。
  • config/: 存放项目的配置文件。
  • hooks/: 存放自定义的 React Hooks。
  • pages/: 存放页面组件。
  • public/: 存放公开的静态文件。
  • services/: 存放与后端交互的服务文件。
  • styles/: 存放全局样式文件。
  • utils/: 存放工具函数。
  • .gitignore: Git 忽略文件配置。
  • .prettierrc: Prettier 代码格式化配置。
  • package.json: 项目依赖和脚本配置。
  • README.md: 项目说明文档。
  • tsconfig.json: TypeScript 配置文件。

2. 项目的启动文件介绍

项目的启动文件是 package.json 中的 start 脚本。通常情况下,启动命令如下:

"scripts": {
  "start": "react-scripts start"
}

运行 npm startyarn start 即可启动开发服务器。

3. 项目的配置文件介绍

项目的配置文件主要存放在 config/ 目录下。以下是一些常见的配置文件:

  • config/default.json: 默认配置文件,包含项目的默认设置。
  • config/production.json: 生产环境配置文件,包含生产环境的特定设置。
  • config/development.json: 开发环境配置文件,包含开发环境的特定设置。

这些配置文件通常使用 config 库进行管理,可以通过 process.env.NODE_ENV 来加载不同的配置文件。

例如,在代码中使用配置:

import config from 'config';

const apiUrl = config.get('apiUrl');

通过这种方式,可以方便地在不同环境中切换配置。

make-sense Free to use online tool for labelling photos. https://makesense.ai make-sense 项目地址: https://gitcode.com/gh_mirrors/ma/make-sense

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### Lanenet 使用教程和文档 #### Gen-LaneNet简介 Gen-LaneNet 是一种先进的3D车道线检测方案,旨在解决自动驾驶中的复杂环境感知挑战。该框架集成了图像编码、特征空间转换以及3D车道预测于一体,形成了一个高效且精确的统一网络结构[^1]。 #### 安装准备 为了顺利运行 PyTorch-LaneNet,在开始之前需确保已安装必要的依赖库并配置好开发环境。具体步骤可参照官方提供的《PyTorch-LaneNet安装与使用指南》进行操作[^3]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu git clone https://gitcode.com/gh_mirrors/py/pytorch-lanenet.git cd pytorch-lanenet pip install -r requirements.txt ``` #### 数据预处理 数据集的质量直接影响到模型训练的效果。因此,在正式进入模型训练前,应当先准备好高质量的数据集,并对其进行适当处理以便于后续的学习过程。通常情况下,这一步骤涉及到了图片裁剪、缩放、增强等一系列操作。 #### 训练流程 完成上述准备工作后即可启动训练脚本。这里推荐采用默认参数作为初次尝试的基础设定;随着经验积累和技术理解加深,可以根据实际需求调整超参以优化性能表现。 ```python from lanenet_model import LaneNetTrainer trainer = LaneNetTrainer() trainer.train() ``` #### 测试评估 当模型收敛稳定后,下一步便是利用测试集验证其泛化能力。此时应加载保存下来的最优权重文件,并调用相应的接口函数执行推理计算。 ```python import cv2 from lanenet_model import LaneNetTester tester = LaneNetTester(model_path='checkpoints/best.pth') image = cv2.imread('test_image.jpg') result = tester.predict(image=image) cv2.imshow('Lane Detection Result', result['binary_img']) cv2.waitKey(0) ``` #### 文档资源 除了源码本身外,《PyTorch-LaneNet安装与使用指南》还提供了详细的API说明文档及实例代码供参考学习。此外,社区内也存在大量由其他贡献者分享的技术博客文章可供查阅交流心得体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤滢露

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值