Azure Video Indexer 示例项目教程

Azure Video Indexer 示例项目教程

azure-video-indexer-samples Contains the Azure Media Services Video Indexer samples azure-video-indexer-samples 项目地址: https://gitcode.com/gh_mirrors/az/azure-video-indexer-samples

1. 项目介绍

Azure Video Indexer 是一个基于 Azure 媒体服务的视频分析工具,能够通过 AI 技术从视频中提取音频、视觉、文字、人脸和说话者等信息,使视频内容更易于搜索和理解。本项目提供了 Azure Video Indexer 的代码示例和项目案例,帮助开发者快速上手并集成到自己的产品中。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经拥有一个 Azure 订阅,并且已经注册了 Azure Video Indexer 服务。如果没有,请先注册并获取 API 密钥。

2.2 安装依赖

首先,克隆项目到本地:

git clone https://github.com/Azure-Samples/azure-video-indexer-samples.git
cd azure-video-indexer-samples

2.3 上传并索引视频

以下是一个简单的示例代码,展示如何使用 Azure Video Indexer API 上传并索引视频:

import requests
import json

# 替换为你的 API 密钥和账户 ID
API_KEY = 'your_api_key'
ACCOUNT_ID = 'your_account_id'
LOCATION = 'trial'  # 或者 'eastus' 等其他区域

# 获取访问令牌
url = f'https://api.videoindexer.ai/{LOCATION}/Accounts/{ACCOUNT_ID}/AccessToken?allowEdit=true'
headers = {'Ocp-Apim-Subscription-Key': API_KEY}
response = requests.get(url, headers=headers)
access_token = response.text.strip('"')

# 上传视频
video_url = 'https://your-video-url.com/video.mp4'
upload_url = f'https://api.videoindexer.ai/{LOCATION}/Accounts/{ACCOUNT_ID}/Videos?accessToken={access_token}&name=MyVideo&videoUrl={video_url}'
response = requests.post(upload_url)
video_id = json.loads(response.text)['id']

print(f'视频已上传,ID: {video_id}')

2.4 获取视频索引结果

上传视频后,你可以通过以下代码获取视频的索引结果:

# 获取视频索引结果
insights_url = f'https://api.videoindexer.ai/{LOCATION}/Accounts/{ACCOUNT_ID}/Videos/{video_id}/Index?accessToken={access_token}'
response = requests.get(insights_url)
insights = json.loads(response.text)

print(json.dumps(insights, indent=2))

3. 应用案例和最佳实践

3.1 视频内容搜索

通过 Azure Video Indexer,你可以从视频中提取关键字、人脸、文字等信息,使视频内容更易于搜索。例如,你可以构建一个视频搜索引擎,用户可以通过关键字、人物或时间点快速找到相关视频片段。

3.2 视频内容审核

Azure Video Indexer 还可以用于视频内容审核,自动检测视频中的敏感内容,如暴力、色情等,帮助企业遵守相关法规和政策。

3.3 视频字幕生成

通过 Azure Video Indexer,你可以自动生成视频的字幕文件,支持多种语言,帮助听力障碍用户更好地理解视频内容。

4. 典型生态项目

4.1 Azure Media Services

Azure Media Services 是 Azure 提供的媒体处理和分发服务,与 Azure Video Indexer 紧密集成,提供端到端的视频处理解决方案。

4.2 Azure Cognitive Services

Azure Cognitive Services 提供了一系列 AI 服务,包括计算机视觉、语音识别等,可以与 Azure Video Indexer 结合使用,进一步提升视频分析的能力。

4.3 Azure Logic Apps

Azure Logic Apps 可以帮助你自动化视频处理流程,例如自动上传视频、索引视频并生成报告,适合需要批量处理视频的场景。

通过本教程,你应该已经掌握了 Azure Video Indexer 的基本使用方法,并了解了其在实际应用中的潜力。希望你能利用这些知识,构建出更多有趣和实用的视频分析应用。

azure-video-indexer-samples Contains the Azure Media Services Video Indexer samples azure-video-indexer-samples 项目地址: https://gitcode.com/gh_mirrors/az/azure-video-indexer-samples

数据集介绍:多物种动物目标检测数据集 一、基础信息 数据集名称:多物种动物目标检测数据集 图片数量: - 训练集:7,767张 - 验证集:2,219张 - 测试集:1,110张 总计:11,096张覆盖多场景的动物图片 分类类别: 涵盖75个动物类别,包括: - 大型哺乳动物(熊、大象、长颈鹿、犀牛) - 珍稀物种(熊猫、红熊猫、树袋熊、海豹) - 水生生物(鲨鱼、海龟、水母、螃蟹) - 飞禽与昆虫(鹰、鹦鹉、蝴蝶、瓢虫) - 常见家畜(牛、马、猪、山羊) 标注格式: YOLO格式,含归一化边界框坐标及类别编号,可直接适配YOLOv5/v7/v8等主流框架。 二、适用场景 野生动物监测系统开发: 支持无人机航拍或野外摄像头数据中的动物识别,用于生物多样性研究和偷猎预警。 农业智能化管理: 检测农场牲畜(牛、羊、鸡)的健康状态与行为模式,优化养殖管理效率。 自然教育应用: 集成至AR自然观察工具,实时识别动物种类并提供生态知识讲解。 生物研究数据库建设: 为动物行为学、物种分布研究提供结构化视觉数据支撑。 安防边界预警: 识别特定危险动物(鳄鱼、毒蛇、蝎子),用于营地安全监控系统。 三、数据集优势 物种覆盖全面性: 包含陆地、水生、飞行等生态位的75类动物,涵盖从微型昆虫(瓢虫)到巨型生物(鲸鱼)的尺度跨度。 场景多样性: 整合航拍、地面拍摄、近距离特写等多视角数据,增强模型环境适应能力。 标注专业度: 严格校验的YOLO标注数据,边界框精准匹配动物形态特征,支持复杂遮挡场景检测。 跨领域适用性: 同时满足生态保护、农业管理、教育娱乐等多领域需求,提供从动物检测到细粒度分类的扩展能力。 模型兼容性: 标准YOLO格式支持快速迁移学习,可基于现有权重进行物种定制化模型开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伏葵飚Anastasia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值