Detectree 项目使用教程

Detectree 项目使用教程

detectreeData visualization for blue teams项目地址:https://gitcode.com/gh_mirrors/det/detectree

1. 项目的目录结构及介绍

detectree/
├── data/
│   ├── tiles/          # 存放训练用的图像切片
│   └── response_tiles/ # 存放响应图像切片
├── detectree/
│   ├── __init__.py
│   ├── classifier.py   # 分类器相关代码
│   ├── training.py     # 训练相关代码
│   └── utils.py        # 工具函数
├── tests/
│   ├── __init__.py
│   └── test_classifier.py # 测试分类器代码
├── .gitignore
├── README.md
├── setup.py
└── requirements.txt
  • data/: 存放项目所需的数据文件,包括训练图像和响应图像。
  • detectree/: 项目的主要代码目录,包含分类器、训练和工具函数。
  • tests/: 存放测试代码。
  • .gitignore: Git 忽略文件。
  • README.md: 项目说明文档。
  • setup.py: 项目安装文件。
  • requirements.txt: 项目依赖文件。

2. 项目的启动文件介绍

项目的启动文件主要是 setup.py,它负责项目的安装和依赖管理。通过运行以下命令可以安装项目:

pip install -e .

3. 项目的配置文件介绍

项目没有明确的配置文件,但可以通过修改 detectree/training.pydetectree/classifier.py 中的参数来调整训练和分类的行为。例如,可以在 training.py 中修改训练数据的路径和参数:

ts = dtr.TrainingSelector(img_dir='data/tiles')
split_df = ts.train_test_split(method='cluster-I')

classifier.py 中可以修改分类器的参数:

clf = dtr.ClassifierTrainer()
clf.train_classifier(split_df=split_df, response_img_dir='data/response_tiles')

通过这些参数的调整,可以适应不同的数据集和需求。

detectreeData visualization for blue teams项目地址:https://gitcode.com/gh_mirrors/det/detectree

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁虹宝Lucille

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值