Detectree 项目使用教程
detectreeData visualization for blue teams项目地址:https://gitcode.com/gh_mirrors/det/detectree
1. 项目的目录结构及介绍
detectree/
├── data/
│ ├── tiles/ # 存放训练用的图像切片
│ └── response_tiles/ # 存放响应图像切片
├── detectree/
│ ├── __init__.py
│ ├── classifier.py # 分类器相关代码
│ ├── training.py # 训练相关代码
│ └── utils.py # 工具函数
├── tests/
│ ├── __init__.py
│ └── test_classifier.py # 测试分类器代码
├── .gitignore
├── README.md
├── setup.py
└── requirements.txt
data/
: 存放项目所需的数据文件,包括训练图像和响应图像。detectree/
: 项目的主要代码目录,包含分类器、训练和工具函数。tests/
: 存放测试代码。.gitignore
: Git 忽略文件。README.md
: 项目说明文档。setup.py
: 项目安装文件。requirements.txt
: 项目依赖文件。
2. 项目的启动文件介绍
项目的启动文件主要是 setup.py
,它负责项目的安装和依赖管理。通过运行以下命令可以安装项目:
pip install -e .
3. 项目的配置文件介绍
项目没有明确的配置文件,但可以通过修改 detectree/training.py
和 detectree/classifier.py
中的参数来调整训练和分类的行为。例如,可以在 training.py
中修改训练数据的路径和参数:
ts = dtr.TrainingSelector(img_dir='data/tiles')
split_df = ts.train_test_split(method='cluster-I')
在 classifier.py
中可以修改分类器的参数:
clf = dtr.ClassifierTrainer()
clf.train_classifier(split_df=split_df, response_img_dir='data/response_tiles')
通过这些参数的调整,可以适应不同的数据集和需求。
detectreeData visualization for blue teams项目地址:https://gitcode.com/gh_mirrors/det/detectree