GANomaly 开源项目教程
1. 项目的目录结构及介绍
GANomaly 项目的目录结构如下:
ganomaly/
├── checkpoints/
├── data/
├── datasets/
├── figures/
├── logs/
├── models/
├── outputs/
├── scripts/
├── src/
├── tests/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
├── setup.py
└── train.py
目录介绍:
- checkpoints/: 用于存储训练过程中的模型检查点。
- data/: 用于存储数据集文件。
- datasets/: 包含数据集处理的相关脚本。
- figures/: 存储项目相关的图表。
- logs/: 存储训练日志。
- models/: 包含模型的定义文件。
- outputs/: 存储训练输出结果。
- scripts/: 包含一些辅助脚本。
- src/: 包含项目的主要源代码。
- tests/: 包含测试脚本。
- utils/: 包含一些工具函数。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖包列表。
- setup.py: 项目安装脚本。
- train.py: 训练模型的主脚本。
2. 项目的启动文件介绍
项目的启动文件是 train.py
。该文件负责启动训练过程,配置模型参数,并调用相关模块进行训练。
train.py 主要功能:
- 解析命令行参数。
- 加载数据集。
- 初始化模型。
- 配置训练参数。
- 启动训练循环。
- 保存训练结果和模型检查点。
3. 项目的配置文件介绍
项目的配置文件主要是 train.py
中通过命令行参数进行配置。以下是一些常用的配置参数:
- --dataset: 指定数据集名称。
- --batchsize: 指定批处理大小。
- --isize: 指定输入图像的大小。
- --nz: 指定潜在向量的维度。
- --ngf: 指定生成器中特征图的维度。
- --ndf: 指定判别器中特征图的维度。
- --extralayers: 指定在生成器和判别器中添加的额外层数。
- --device: 指定使用的设备(CPU 或 GPU)。
- --ngpu: 指定使用的 GPU 数量。
- --gen: 指定生成器模型文件路径。
- --disc: 指定判别器模型文件路径。
- --outf: 指定输出文件夹路径。
- --workers: 指定数据加载器的工作线程数。
- --epochs: 指定训练的 epoch 数量。
- --lr: 指定学习率。
- --beta1: 指定 Adam 优化器的 beta1 参数。
- --beta2: 指定 Adam 优化器的 beta2 参数。
- --manualseed: 指定随机种子。
- --classes: 指定训练的类别。
通过这些配置参数,用户可以灵活地调整训练过程中的各项设置,以适应不同的需求和环境。