知识图谱生成器:开源项目教程

知识图谱生成器:开源项目教程

knowledge_graph_maker knowledge_graph_maker 项目地址: https://gitcode.com/gh_mirrors/kn/knowledge_graph_maker

1. 项目介绍

知识图谱生成器(Knowledge Graph Maker)是一个开源的Python库,它可以基于给定的本体(Ontology)将任何文本转换为知识图谱。知识图谱,也称为语义网络,是一种用于表示现实世界中实体(如对象、事件、情况或概念)及其相互关系的网络结构。这种信息通常存储在图数据库中,并以图形结构进行可视化。

本项目旨在帮助用户从文本中提取实体和关系,构建出结构化的知识图谱,进而用于各种分析和应用,如文本理解、信息检索、自然语言处理等。

2. 项目快速启动

首先,确保您的环境中已经安装了Python。

安装库

使用pip命令安装知识图谱生成器库:

pip install knowledge-graph-maker

配置环境变量

.env文件中设置以下环境变量:

  • 如果使用GROQ客户端:
GROQ_API_KEY=your_groq_api_key
  • 如果使用OpenAI客户端:
OPENAI_API_KEY=your_openai_api_key
  • 如果使用Neo4j数据库:
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=localneo4j
NEO4J_URI=bolt://localhost:7687

创建知识图谱

  1. 定义本体(Ontology)
from knowledge_graph_maker import Ontology

ontology = Ontology(
    labels=[
        {"Person": "人名,不要使用任何形容词,人名可能通过名字或代词引用"},
        {"Object": "对象名,不要加定冠词'the'"},
        {"Event": "涉及多个人物的事件,不要包含限定词或动词,如gives, leaves, works等"},
        "Place",
        "Document",
        "Organisation",
        "Action",
        {"Miscellanous": "任何无法归类到其他标签的重要概念"}
    ],
    relationships=[
        "任何两个实体之间的关系"
    ]
)
  1. 分割文本

由于LLM的上下文窗口有限,需要将文本分割成适当的块。

  1. 选择LLM模型
from knowledge_graph_maker import GroqClient, OpenAIClient

# 选择Groq模型
model = "mixtral-8x7b-32768"
llm = GroqClient(model=model, temperature=0.1, top_p=0.5)

# 或者选择OpenAI模型
oai_model = "gpt-3.5-turbo"
llm = OpenAIClient(model=oai_model, temperature=0.1, top_p=0.5)
  1. 运行图生成器
from knowledge_graph_maker import GraphMaker, Document

graph_maker = GraphMaker(ontology=ontology, llm_client=llm, verbose=False)

# 创建文档列表
docs = [Document(text="你的文本内容", metadata={"context": "相关上下文信息"})]

# 生成图
graph = graph_maker.from_documents(list(docs), delay_s_between=10)

# 输出结果
print("Total number of Edges", len(graph))
  1. 保存到Neo4j(可选)
from knowledge_graph_maker import Neo4jGraphModel

neo4j_graph = Neo4jGraphModel(edges=graph, create_indices=True)
neo4j_graph.save()

3. 应用案例和最佳实践

  • 文本分析:使用知识图谱生成器分析长篇文档,提取关键实体和关系,以便更好地理解文本内容。
  • 信息检索:构建知识图谱索引,快速检索相关信息,提高信息检索的效率。
  • 问答系统:结合自然语言处理技术,构建基于知识图谱的问答系统。

4. 典型生态项目

  • Neo4j:用于存储和查询知识图谱的图数据库。
  • GROQ:一种用于自然语言处理的客户端,可以与知识图谱生成器配合使用。
  • OpenAI:提供强大的自然语言处理模型,可以用于知识图谱生成的核心处理。

knowledge_graph_maker knowledge_graph_maker 项目地址: https://gitcode.com/gh_mirrors/kn/knowledge_graph_maker

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈宜旎Dean

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值