NeuralPLexer: 深度学习驱动的蛋白质-配体复合物结构预测教程
项目介绍
NeuralPLexer 是一个基于多尺度深度生成模型的先进工具,它设计用于联合预测蛋白质-配体复合物的三维结构及其他相关特性。该模型由Qiao等人在2024年发表于《Nature Machine Intelligence》的文章中详细介绍,其DOI为10.1038/s42256-024-00792-z。NeuralPLexer不仅能够预测复杂的生物组装结构,还支持非商业用途下的预训练模型下载及下游评估数据集。
项目快速启动
确保您的系统已配备CUDA 10.2或更高版本的支持,并且推荐预先安装libmamba solver以优化conda环境配置。以下是适用于Linux环境的基本安装步骤:
make environment
make install
为了对新的蛋白质-配体对执行模型推理,例如,当您有一个模板PDB结构时,可以使用以下命令示例:
neuralplexer-inference --task=batched_structure_sampling \
--input-receptor input.pdb \
--input-ligand <ligand>.sdf \
--use-template --input-template <template>.pdb \
--out-path <output_path> \
--model-checkpoint <data_dir>/models/complex_structure_prediction.ckpt \
--n-samples 16 \
--chunk-size 4 \
--num-steps=40 \
--cuda \
--sampler=langevin_simulated_annealing
替换<ligand>
、<template>
、<output_path>
和<data_dir>
为实际路径或文件名。
应用案例和最佳实践
NeuralPLexer的应用广泛,尤其适合药物发现、蛋白质工程等领域。最佳实践包括但不限于:
- 药物设计: 利用NeuralPLexer预测潜在药物分子与靶蛋白的结合模式,优化药物候选分子。
- 蛋白质结构建模: 对于未知结构但具有相似已知结构的蛋白质,通过提供模板实现高精度结构预测。
- 多配体研究: 处理如酶-辅因子系统这样的多配体复合体,探索不同配体对活性位点的影响。
典型生态项目
虽然NeuralPLexer本身是独立项目,但在药物研发和生物信息学领域,它可以与其他工具集成形成强大的工作流程,例如:
- 结合分子动力学模拟软件(如GROMACS)进一步验证预测的复合物稳定性。
- 与蛋白质序列分析工具(如BLAST)结合,辅助寻找更多潜在的模板或进行同源蛋白分析。
- 使用化学信息学软件(如RDKit)处理SDF文件,进行更深入的药效团分析。
请注意,使用NeuralPLexer时应遵循其BSD-3-Clause-Clear许可协议,尊重开源精神,合理利用其提供的资源。通过上述指导,您可以开始探索蛋白质-配体结构预测这一复杂而迷人的科学旅程。