NeuralPLexer: 深度学习驱动的蛋白质-配体复合物结构预测教程

NeuralPLexer: 深度学习驱动的蛋白质-配体复合物结构预测教程

NeuralPLexer NeuralPLexer: State-specific protein-ligand complex structure prediction with a multi-scale deep generative model NeuralPLexer 项目地址: https://gitcode.com/gh_mirrors/ne/NeuralPLexer


项目介绍

NeuralPLexer 是一个基于多尺度深度生成模型的先进工具,它设计用于联合预测蛋白质-配体复合物的三维结构及其他相关特性。该模型由Qiao等人在2024年发表于《Nature Machine Intelligence》的文章中详细介绍,其DOI为10.1038/s42256-024-00792-z。NeuralPLexer不仅能够预测复杂的生物组装结构,还支持非商业用途下的预训练模型下载及下游评估数据集。

项目快速启动

确保您的系统已配备CUDA 10.2或更高版本的支持,并且推荐预先安装libmamba solver以优化conda环境配置。以下是适用于Linux环境的基本安装步骤:

make environment
make install

为了对新的蛋白质-配体对执行模型推理,例如,当您有一个模板PDB结构时,可以使用以下命令示例:

neuralplexer-inference --task=batched_structure_sampling \
                       --input-receptor input.pdb \
                       --input-ligand <ligand>.sdf \
                       --use-template --input-template <template>.pdb \
                       --out-path <output_path> \
                       --model-checkpoint <data_dir>/models/complex_structure_prediction.ckpt \
                       --n-samples 16 \
                       --chunk-size 4 \
                       --num-steps=40 \
                       --cuda \
                       --sampler=langevin_simulated_annealing

替换<ligand><template><output_path><data_dir>为实际路径或文件名。

应用案例和最佳实践

NeuralPLexer的应用广泛,尤其适合药物发现、蛋白质工程等领域。最佳实践包括但不限于:

  • 药物设计: 利用NeuralPLexer预测潜在药物分子与靶蛋白的结合模式,优化药物候选分子。
  • 蛋白质结构建模: 对于未知结构但具有相似已知结构的蛋白质,通过提供模板实现高精度结构预测。
  • 多配体研究: 处理如酶-辅因子系统这样的多配体复合体,探索不同配体对活性位点的影响。

典型生态项目

虽然NeuralPLexer本身是独立项目,但在药物研发和生物信息学领域,它可以与其他工具集成形成强大的工作流程,例如:

  • 结合分子动力学模拟软件(如GROMACS)进一步验证预测的复合物稳定性。
  • 与蛋白质序列分析工具(如BLAST)结合,辅助寻找更多潜在的模板或进行同源蛋白分析。
  • 使用化学信息学软件(如RDKit)处理SDF文件,进行更深入的药效团分析。

请注意,使用NeuralPLexer时应遵循其BSD-3-Clause-Clear许可协议,尊重开源精神,合理利用其提供的资源。通过上述指导,您可以开始探索蛋白质-配体结构预测这一复杂而迷人的科学旅程。

NeuralPLexer NeuralPLexer: State-specific protein-ligand complex structure prediction with a multi-scale deep generative model NeuralPLexer 项目地址: https://gitcode.com/gh_mirrors/ne/NeuralPLexer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙嫣女

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值