TD3_BC 项目使用教程
1、项目的目录结构及介绍
TD3_BC/
├── LICENSE
├── README.md
├── TD3_BC.py
├── main.py
├── run_experiments.sh
└── utils.py
- LICENSE: 项目许可证文件,采用 MIT 许可证。
- README.md: 项目说明文档,包含项目的基本介绍和使用方法。
- TD3_BC.py: 核心算法实现文件,包含 TD3+BC 算法的具体实现。
- main.py: 项目的主启动文件,负责初始化和运行实验。
- run_experiments.sh: 运行实验的脚本文件,用于自动化执行实验。
- utils.py: 工具函数文件,包含一些辅助函数和工具类。
2、项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责初始化和运行实验。以下是文件的主要内容和功能介绍:
import TD3_BC
import utils
def main():
# 初始化环境和参数
env = utils.make_env("environment_name")
params = utils.load_params("config_file_path")
# 创建 TD3+BC 代理
agent = TD3_BC.TD3_BC(env, params)
# 运行实验
agent.train()
if __name__ == "__main__":
main()
- 初始化环境: 使用
utils.make_env
函数创建环境实例。 - 加载参数: 使用
utils.load_params
函数加载配置文件中的参数。 - 创建代理: 创建 TD3+BC 代理实例,传入环境和参数。
- 运行实验: 调用代理的
train
方法开始训练。
3、项目的配置文件介绍
config.yaml
配置文件 config.yaml
包含项目运行所需的各种参数,以下是配置文件的示例内容:
environment_name: "HalfCheetah-v2"
learning_rate: 0.001
batch_size: 100
buffer_size: 1000000
discount_factor: 0.99
tau: 0.005
policy_noise: 0.2
noise_clip: 0.5
policy_delay: 2
- environment_name: 环境名称,指定要使用的强化学习环境。
- learning_rate: 学习率,控制模型更新的步长。
- batch_size: 批量大小,每次训练时从经验池中抽取的样本数量。
- buffer_size: 经验池大小,存储经验样本的最大数量。
- discount_factor: 折扣因子,用于计算未来奖励的折扣。
- tau: 软更新参数,控制目标网络的更新速度。
- policy_noise: 策略噪声,用于探索。
- noise_clip: 噪声裁剪,限制噪声的最大值。
- policy_delay: 策略延迟,控制策略更新的频率。
通过修改配置文件中的参数,可以调整模型的训练行为和性能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考