Kiss3DGen 项目启动与配置教程
Kiss3DGen 项目地址: https://gitcode.com/gh_mirrors/ki/Kiss3DGen
1. 项目目录结构及介绍
Kiss3DGen项目的目录结构如下所示:
assets/
: 存储项目所需的资源文件。checkpoint/
: 保存预训练模型权重文件。custom_diffusers/
: 自定义的diffusers相关代码。examples/
: 包含示例脚本,用于展示如何使用模型进行不同的3D资产生成任务。init_3d_Bundle/
: 初始化3D束相关代码。models/
: 模型定义和相关代码。pipeline/
: 包含用于3D资产生成的核心代码。utils/
: 通用工具函数和类。LICENSE.txt
: 项目的MIT许可证文件。README.md
: 项目说明文件。app.py
: 启动本地Gradio演示的Python脚本。download_models.py
: 下载预训练模型权重的Python脚本。requirements.txt
: 项目依赖的Python包列表。shader.py
: 着色器相关代码。video_render.py
: 视频渲染相关代码。
2. 项目的启动文件介绍
项目的启动文件主要是app.py
,该文件用于启动一个本地的Gradio演示,用户可以通过这个演示进行交互式的3D资产生成。
# app.py 示例代码片段
import gradio as gr
def text_to_3d(text):
# 这里将包含将文本转换为3D资产的代码逻辑
pass
def image_to_3d(image):
# 这里将包含将图像转换为3D资产的代码逻辑
pass
def demo():
interface = gr.Interface(
fn=text_to_3d,
inputs=gr.inputs.Textbox(lines=2, placeholder="输入一些描述性文本..."),
outputs="3d"
)
interface.launch()
if __name__ == "__main__":
demo()
用户可以通过运行python app.py
来启动这个演示。
3. 项目的配置文件介绍
项目的配置文件主要集中在pipeline/pipeline_config/default.yaml
,这个文件用于定义3D资产生成过程中使用的模型和相关参数。
以下是一个配置文件的示例:
# pipeline_config/default.yaml 示例内容
model:
name: "Kiss3DGen"
device: "cuda" # 可以设置为 "cuda" 或 "cpu"
parameters:
text_to_3d:
prompt: "一个描述性的文本提示"
image_to_3d:
image_path: "path/to/image.jpg"
3d_to_3d:
input_3d_path: "path/to/input_3d_model.obj"
output_3d_path: "path/to/output_3d_model.obj"
用户可以根据自己的需求调整配置文件中的参数,以改变3D资产生成过程的行为。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考