Self-Attention-Guidance 项目使用教程

Self-Attention-Guidance 项目使用教程

Self-Attention-Guidance The implementation of the paper "Improving Sample Quality of Diffusion Models Using Self-Attention Guidance" (ICCV`23) Self-Attention-Guidance 项目地址: https://gitcode.com/gh_mirrors/se/Self-Attention-Guidance

1. 项目介绍

Self-Attention-Guidance 是一个开源项目,旨在通过自注意力机制来提升扩散模型的样本质量。该项目基于论文 "Improving Sample Quality of Diffusion Models Using Self-Attention Guidance" (ICCV`23) 实现。通过分析扩散模型的自注意力图,项目提供了一种改进样本质量的方法,无需进一步训练或数据集。

2. 项目快速启动

环境准备

首先,确保你已经安装了 Python 3.8 和 PyTorch 1.11.0。你可以使用以下命令来设置环境:

git clone https://github.com/SusungHong/Self-Attention-Guidance.git
conda create -n sag python=3.8 anaconda
conda activate sag
conda install mpi4py
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
pip install blobfile

下载预训练模型

下载预训练的 ImageNet 和 LSUN 模型,并将它们放置在 models/ 目录下:

# 示例命令,具体下载链接请参考项目文档
wget https://example.com/pretrained_models/128x128_diffusion.pt -P models/

运行示例

以下是一个简单的示例,使用自注意力指导生成图像:

SAMPLE_FLAGS="--batch_size 64 --num_samples 10000 --timestep_respacing 250"
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 128 --learn_sigma True --noise_schedule linear --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
SAG_FLAGS="--guide_scale 1.1 --guide_start 250 --sel_attn_block output --sel_attn_depth 8 --blur_sigma 3 --classifier_guidance True"

mpiexec -n $NUM_GPUS python classifier_sample.py $SAG_FLAGS $MODEL_FLAGS --classifier_scale 0.5 --classifier_path models/128x128_classifier.pt --model_path models/128x128_diffusion.pt $SAMPLE_FLAGS

3. 应用案例和最佳实践

案例1:图像生成

使用 Self-Attention-Guidance 可以显著提升图像生成的质量。通过调整 guide_scaleguide_start 参数,可以控制自注意力指导的强度和起始时间步。

案例2:条件生成

在条件生成任务中,结合自注意力指导和分类器指导,可以生成更符合条件的图像。通过设置 classifier_guidanceTrue,并调整 classifier_scale,可以实现这一目标。

4. 典型生态项目

1. OpenAI Guided Diffusion

Self-Attention-Guidance 项目基于 OpenAI 的 Guided Diffusion 项目进行扩展。Guided Diffusion 提供了一个强大的扩散模型框架,而 Self-Attention-Guidance 在此基础上引入了自注意力机制,进一步提升了模型性能。

2. Hugging Face Diffusers

Hugging Face 的 Diffusers 库是一个流行的扩散模型库,支持多种扩散模型和生成方法。Self-Attention-Guidance 的实现可以与 Diffusers 库结合使用,提供更高质量的图像生成功能。

3. Yandex Research DDPM Segmentation

Yandex Research 的 DDPM Segmentation 项目提供了用于分割任务的扩散模型实现。Self-Attention-Guidance 通过引入自注意力机制,可以进一步提升分割任务的性能。

Self-Attention-Guidance The implementation of the paper "Improving Sample Quality of Diffusion Models Using Self-Attention Guidance" (ICCV`23) Self-Attention-Guidance 项目地址: https://gitcode.com/gh_mirrors/se/Self-Attention-Guidance

### Transformers Main Library Information and Resources The transformers library, developed primarily by Hugging Face, has become a cornerstone in the field of natural language processing (NLP). This library provides state-of-the-art models that can be used directly or fine-tuned for various NLP tasks such as text classification, named entity recognition, question answering, summarization, translation, and more. #### Key Features of the Transformers Library - **Pretrained Models**: Offers access to numerous pretrained models like BERT, RoBERTa, DistilBert, GPT-2/3, T5, etc., which have been trained on large datasets. - **Ease of Use**: Simplifies loading and using these powerful models with minimal code required. For instance, one can load a tokenizer and model from a checkpoint easily: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-uncased') model = BertModel.from_pretrained('bert-base-uncased') ``` - **Flexibility**: Supports both PyTorch and TensorFlow frameworks, allowing users flexibility depending on their preferred environment[^1]. - **Extensive Documentation**: Provides comprehensive guides, tutorials, API references, and examples through official documentation available at [Hugging Face's website](https://huggingface.co/docs). - **Community Support**: Boasts an active community contributing new models, tools, plugins, and sharing knowledge via forums, GitHub issues, social media platforms, webinars, workshops, conferences, among others. #### Additional Resources Related to Transformers For those interested in delving deeper into how transformer architectures work under the hood, including self-attention mechanisms and positional encoding schemes, additional reading materials might prove beneficial. These topics are covered extensively within academic papers and specialized textbooks focusing on deep learning applied specifically towards sequential data handling problems[^4]. --related questions-- 1. What types of applications benefit most significantly from utilizing pre-trained models provided by the transformers library? 2. How does the inclusion of static covariates improve time series forecasting when employing advanced neural network structures like LSTM or Transformer-based approaches? 3. Can you provide guidance on documenting data collection processes effectively according to best practices outlined in relevant literature? 4. In what ways do prompt engineering techniques influence the performance outcomes generated by large language models during inference stages?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨女嫚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值