开源项目 `path_planning` 使用教程

开源项目 path_planning 使用教程

path_planningThis repository contains path planning algorithms in C++ for a grid based search.项目地址:https://gitcode.com/gh_mirrors/pa/path_planning

1. 项目的目录结构及介绍

path_planning/
├── README.md
├── requirements.txt
├── setup.py
├── path_planning/
│   ├── __init__.py
│   ├── a_star.py
│   ├── dijkstra.py
│   ├── rrt.py
│   ├── utils.py
│   └── visualization.py
└── tests/
    ├── __init__.py
    ├── test_a_star.py
    ├── test_dijkstra.py
    └── test_rrt.py
  • README.md: 项目介绍和使用说明。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: 用于安装项目的脚本。
  • path_planning/: 核心代码目录。
    • __init__.py: 模块初始化文件。
    • a_star.py: A* 算法实现。
    • dijkstra.py: Dijkstra 算法实现。
    • rrt.py: RRT 算法实现。
    • utils.py: 工具函数。
    • visualization.py: 可视化工具。
  • tests/: 测试代码目录。
    • __init__.py: 测试模块初始化文件。
    • test_a_star.py: A* 算法测试。
    • test_dijkstra.py: Dijkstra 算法测试。
    • test_rrt.py: RRT 算法测试。

2. 项目的启动文件介绍

项目的启动文件主要是 path_planning 目录下的各个算法实现文件,如 a_star.py, dijkstra.py, 和 rrt.py。这些文件包含了路径规划算法的核心逻辑。

例如,a_star.py 文件中包含了 A* 算法的实现:

from .utils import get_neighbors, heuristic

def a_star(start, goal, grid):
    open_list = [start]
    closed_list = []
    # 其他逻辑...
    return path

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过修改 utils.py 中的参数来调整算法的行为。例如,utils.py 中定义了网格的大小和障碍物的位置:

GRID_SIZE = (10, 10)
OBSTACLES = [(3, 4), (5, 6)]

这些参数可以在运行算法前进行修改,以适应不同的场景需求。

path_planningThis repository contains path planning algorithms in C++ for a grid based search.项目地址:https://gitcode.com/gh_mirrors/pa/path_planning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华湘连Royce

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值