OpenLLM 使用教程
项目地址:https://gitcode.com/gh_mirrors/op/OpenLLM
项目介绍
OpenLLM 是一个开源项目,旨在让开发者能够轻松地运行任何开源的大型语言模型(LLMs),如 Llama 3、Qwen2、Phi3 等,或者自定义模型,并将其作为与 OpenAI 兼容的 API 进行访问。OpenLLM 提供了一个内置的聊天 UI、先进的推理后端,以及一个简化的工作流程,用于创建企业级的云部署,支持 Docker、Kubernetes 和 BentoCloud。
项目快速启动
安装 OpenLLM
首先,你需要安装 OpenLLM。你可以通过以下命令来安装:
pip install openllm
运行 OpenLLM
安装完成后,你可以通过以下命令来运行 OpenLLM:
openllm hello
启动聊天 UI
OpenLLM 提供了一个聊天 UI,你可以通过访问 http://localhost:3000/chat
来使用它。
在 CLI 中聊天
你也可以在命令行中启动一个聊天会话,使用以下命令:
openllm run llama3:8b
应用案例和最佳实践
企业级云部署
OpenLLM 支持通过 Docker 和 Kubernetes 进行企业级云部署。你可以使用 BentoCloud 来简化部署过程。
自定义模型
你可以添加一个模型仓库来运行自定义模型。OpenLLM 提供了一个默认的模型仓库,包含最新的开源 LLMs,如 Llama 3、Mistral 和 Qwen2。
典型生态项目
BentoML
BentoML 是一个用于构建、部署和管理机器学习模型的开源框架。OpenLLM 与 BentoML 紧密集成,使得模型部署更加简单和高效。
vLLM
如果你在 GPU 上运行 OpenLLM,推荐使用 vLLM 运行时。你可以通过以下命令来安装:
pip install "openllm[vllm]"
通过这些步骤,你可以快速启动并使用 OpenLLM,进行企业级的云部署,并探索其丰富的生态项目。
OpenLLM Operating LLMs in production 项目地址: https://gitcode.com/gh_mirrors/op/OpenLLM
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考